

ICD

INTERACTIVE
COBOL
DEBUGGER
Version 20

ICD Group, Inc.
P.O. Box 15067 Newark, Delaware 19711
(302) 368-0538
www.ICDGroup.biz

[bookmark: _GoBack]Copyright © 1984, 1989, 1990, 1991, 1995, 1996, 2001, 2002, 2003, 201r5 ICD Group, Inc. Newark, Delaware 19711
All rights reserved

This material is proprietary to ICD Group, Inc. (ICDG), and is not to be reproduced, disclosed, or used in any manner except in accordance with program license or upon written authorization from ICD Group.
ICD Group believes that the software furnished herewith is accurate and reliable, and much care has been taken in its preparation. However, no responsibility, financial or otherwise, can be accepted from any consequences arising out of the use of this material, including loss of profit, indirect, special or consequential damages. There are no warranties which extend beyond this specification.
The customer should exercise care to assure that use of the software will be in full compliance with laws, rules, and regulations of the jurisdictions with respect to which it is used.

Table of Contents
OVERVIEW	1
Debugging	1
INTRODUCTION	2
What is an interactive debugger ?	2
Why use an interactive debugger ?	2
When should you use an interactive debugger ?	2
Getting started with ICD	2
Quick Summary	2
Compiling your program	3
Running your program	4
Sample Debugging Session	4
Without ICD	4
With ICD	5
COMMANDS	7
Commands by Function	7
	Telling your program where to stop	7
	Displaying your variables	7
	Changing data	7
	Getting information about your program and its variables	7
	Getting HELP	7
	Controlling ICD's behavior and defaults	7
	Telling ICD to resume execution of your program	7
	Recording your debugging session	7
	Ending your ICD session	7
	Windowing commands	7
?BP	8
Description	8
Syntax	8
Discussion	8
BREAK	9
Description	9
Syntax	9
Discussion	9
Entering an invalid sequence number as a breakpoint	9
Break Count - counting breakpoints	10
Breakpoints in Copy Libraries	10
WHEN clause (See the WHEN command for a complete description.)	10
WINDOW mode and highlighted breakpoints	11
BEGIN and END as breakpoints	11
Some BREAKPOINT examples:	11
CONTINUE	12
Description	12
Syntax	12
Discussion	12
Statement by statement execution	12
Examples:	12
COPYLIB	13
Description	13
Syntax	13
Examples:	13
DISPLAY	14
Description	14
Syntax:	14
Discussion	15
Examples:	15
Displaying File Attributes	15
Displaying all of your variables	15
Displaying variables that require more than one line	15
Displaying a range of a subscripted variable	15
Using THRU (or ..) to display multiple variables	15
Expressions	16
Display format	16
HEX format	16
Display all the variables in a statement	16
Displaying Condition Names	17
EXAMINE	18
Description	18
Syntax	18
Examples:	18
FIND	19
Description	19
Syntax	19
Discussion	19
Example:	19
HELP	21
Description	21
Syntax	21
Examples:	21
? HI	22
Description	22
Syntax	22
Discussion	22
Example:	22
LIST / PRINT	23
Description	23
Syntax	23
Example:	23
OPTION	24
Description	24
Syntax	24
Discussion	24
HI	25
HIVALUE	25
HEX	25
HEXGROUP	25
DISPLAYLEADINGZEROES	25
REUSECOMMANDLINE	25
UNDIGITCHECK	25
TD, MT, T27 or ANSII	25
TRACE	25
ZOOMOUT	26
ZOOM is set but the file has no paragraph names !	26
Examples:	27
PLAYBACK / DO	28
Description	28
Syntax	28
Discussion	28
Example	28
QUIT	29
Description	29
Syntax	29
Example:	29
RECORD	30
Description	30
Syntax	30
Discussion	30
Example :	30
SET	31
Description	31
Syntax	31
Discussion	31
Example :	31
SOURCE	32
Description	32
Syntax	32
Discussion	32
Examples :	32
STEP	33
Description	33
Syntax	33
Discussion	33
Example	33
STEP command on IF statements	34
WATCH	35
Description:	35
Syntax:	35
Discussion:	35
Example:	36
WHEN	37
Description	37
Syntax	37
Discussion	38
Efficiency	38
Specifying the condition to be evaluated	38
Restrictions on the WHEN condition	38
Including commands with your WHEN statement	38
Continuing WHEN input lines	39
Including options:	39
WHERE	40
Description	40
Syntax	40
Examples:	40
WINDOW	41
Description:	41
Syntax:	41
Discussion:	41
Hiliting breakpoints on the screen	41
COMPILING with ICD	44
Compiler Control Options	44
$ICD	44
$ ICDACTIVE	45
$ ICDPRODUCTION	45
Bound Programs	46
EXECUTION DETAILS	47
Debugging a Batch Program and dealing with ICD's remote file	47
Debugging a program that uses forms mode screens	47
WFL MODIFY	48
ICD/STARTUP file	48
How to start your program execution without displaying ICD's greeting message	48
Use LFILES to Identify code files compiled with ICD	48
EFFICIENCY CONSIDERATIONS	48
Introduction	48
General Guidelines	49
Breakpoints	49
CONTINUE command	49
Efficiency of the WHEN command	49
Processor Timings while using ICD	49
General Notes	50
SEGMENT SIZE compiler error	50
Using ICDACTIVE	50
FAULT HANDLING	51
Debugging COBOL74 LIBRARIES with ICD	51
Introduction:	51
Neither the caller nor the LIBRARY has a remote input file	52
CANDE	52
WFL	52
Calling program has a remote input file-the library does not	52
Compiled-in file equates	52
Running the program	53
From CANDE	53
From WFL	53
WFL MODIFY	53
Special ICD file equation for Libraries	53
Special file equation with CANDE	53
Special file equation with WFL	53
Debugging two libraries	53
Libraries under COMS ("Unisys e-@ction Transaction Server")	54
COMS onlines, Batch (WFL jobs), and programs with remote files	55
Introduction	55
The steps you need to take	55
1. Identify the name of the remote file in your program	55
2. Identify the station for ICD output	57
3. Constructing the file equates	58
Dynamic remote-file windows	62
QUESTIONS and ANSWERS about typical ICD debugging issues	63

1
v
[bookmark: _Toc30328381]OVERVIEW
The Interactive COBOL Debugger, ICD, is a source-level or symbolic debugger for COBOL74 on UNISYS A Series processors. ICD gives you the ability to interactively control the execution of your program from a terminal. And, because it is a source-level debugger, you debug while using the variable names, PICTURE definitions, and even the source file you used to create the program. ICD is comprised of two parts - a modified version of the standard UNISYS COBOL74 compiler and a run-time Library.
[bookmark: _Toc30328382]Debugging
Debugging usually, but not always, involves the use of a debugger, a powerful tool that allows you to observe the run-time behavior of your program and determine the location of semantic errors. You might also use certain debugging features that are built into COBOL74. Many programmers are first exposed to debugging when they attempt to isolate a problem by adding calls to output functions, such as PRINT or DISPLAY, to their code. This is a perfectly legitimate debugging technique, but once you have located and fixed the problem, you will have to go back through your code and remove all those extra function calls. What's even more annoying is that you may occasionally find a situation where adding new code, even a single PRINT or DISPLAY, changes the behavior of the code you are trying to debug!
Using ICD, you can examine the content of variables in your program without having to insert additional calls to output the values. You can insert a breakpoint in your code to halt execution at the point you are interested in. When your program is halted (in break mode), you can examine local variables and other relevant data using facilities, such as the Watch window. For more information, see the Watch command. Not only can you view the contents while in break mode, you can edit or change the contents, if you desire.
Unlike PRINT or DISPLAY, setting a breakpoint does not add an additional functional call to your source code. Therefore, setting a breakpoint is unlikely to change the behavior of the program you are trying to debug.

When you debug your program with ICD you can do the following:
	Display program variables and expressions (DISPLAY)
	Change program variables (SET)
	Step through your program a line at a time in order to follow its logic
	List lines from your source program (LIST)
	Find the names of variables you declared in your program (FIND)
	Gain control after a fatal program error such as invalid index
	Cause your executing program to pause at any time by entering one command (?HI or ?BP)
	Cause your program to pause when a variable or expression reaches a certain value (WHEN)
And in contrast to traditional debugging methods, ICD allows you to make all of your debugging decisions at run-time.
ICD is available for COBOL74 on all UNISYS A Series processors.
This manual will provide you with all the information you need to use ICD. To get a quick start, simply read the section entitled GETTING STARTED, which includes a SAMPLE SESSION. Later, you can read the sections on compiling, run-time details, and efficiency to get further information.
[bookmark: _Toc30328383]INTRODUCTION
[bookmark: _Toc30328384]What is an interactive debugger ?
An interactive or symbolic debugger allows you to control the execution of your program from a terminal. With ICD your program pauses at execution time just before the first statement in the Procedure Division begins. At this point you decide where in your program you want execution to pause so you can gain control again later. You set a breakpoint there and then enter a command that allows your program to continue until it reaches the breakpoint - at which point you are in control again.
A debugger enables you to display your program source, control program flow, examine or change program variables, and continue your program to the next breakpoint. All this is done at run-time without any changes to your program.
[bookmark: _Toc30328385]Why use an interactive debugger ?
The fact that the debugger is "interactive" means that you make all your debug decisions at run-time - saving you time and re-compilations.
And because it is "symbolic", you use the variables as you defined them in your program. You don't have to deal with machine addresses and internal data representations. The PICTURE you used when you declared a variable is automatically used when setting or displaying it.
An interactive debugger, unlike traditional debugging methods - desk checking, PRINT and MONITOR statements - gives you much greater power and flexibility. Not only do you have the ability to follow the flow of control (as you do when desk checking), but you can also examine variables along the way (as you do when using PRINT and MONITOR statements) - and without the inherent problems about where to place these in your source (and remove them later). In contrast, ICD does not require any program changes nor does it require any of your debugging decisions to be made until run-time.
Interactive debugging is a proven, time-honored technique. Many manufacturers, most notably Digital Equipment Corporation, routinely supply interactive debuggers with all their compilers.
ICD provides powerful, cost-effective interactive debugging for COBOL74 on UNISYS Clearpath mainframes.
[bookmark: _Toc30328386]When should you use an interactive debugger ?
ICD can help you during initial program development as you try to eliminate bugs from your program. In addition, during the maintenance phase, ICD can aid you in checking logic flow. Instead of allocating your time to studying program listings and desk checking, you can use ICD to step through your program, a line or paragraph at a time, and actually see, with real data, how the program behaves.
[bookmark: _Toc30328387]Getting started with ICD
[bookmark: _Toc30328388]Quick Summary
The steps you need to begin using ICD are:
	Add $SET ICD to your source file.
	Compile your program using the ICD compiler.
	If you have a TD type terminal remember to set the TD option (use the OPT + TD command after your program has started) or put your terminal in scroll mode (?+S) and home the cursor before every command.
	Start your program. You will get control before the first statement is executed and you will find it easy to follow your program's progress as you use ICD. For available on-line help just type HELP.
	You need learn only a minimum of command to become productive quickly. Then when you are ready to access the fill power of ICD you can read about the other commands. Try these commands first:
		BREAK CONTINUE DISPLAY SET QUIT
	Set a breakpoint with a BREAK command.
	Let your program continue to the next break point by entering the CONTINUE command.
[bookmark: _Toc30328389]Compiling your program
ICD is activated by one compiler option ($SET ICD), which must appear before the start of the PROCEDURE DIVISION. If your program does not have a remote input file ICD will generate its own. Add the following card to your program:
$SET ICD
IF your program has a remote input file ICD must use the same one. Include the file name with the ICD option. Add the following card to your program:
$SET ICD (REMOTE-FILE)
where REMOTE-FILE is the name of your declared remote file. After adding the ICD option, compile with the ICDCOBOL compiler. For example:
	from CANDE:
COMPILE WITH ICDCOBOL
	from WFL:
COMPILE <program name> WITH ICDCOBOL LIBRARY
You should note that your site may have named your compiler differently. See your system administrator if you need help.
Example 1. This simple case shows a skeleton of a program that does not have a remote file declared. ICD automatically declares one for you

	001800$SET ICD
		. . .
	004900 PROCEDURE DIVISION.
		. . .
	006400 STOP RUN.
Example 2. This example shows a program that already has a remote file declared. Since ICD must use this same file, you have to include it with the ICD compiler option.

	001800$SET ICD (REMOTE-FILE)
		. . .
	003100 SELECT REMOTE-FILE ASSIGN TO REMOTE.
		. . .
	004900 PROCEDURE DIVISION.
		. . .
	005500 OPEN INPUT-OUTPUT REMOTE-FILE.
		. . .
	006400 STOP RUN.
[bookmark: _Toc30328390]Running your program
Run your program from a terminal. ICD expects to get its input one line at a time - therefore if you have a TD type terminal you must not send an entire page when you transmit. Either use OPT + TD to tell ICD that you have a TD terminal or turn on scroll mode (?+S) and HOME your cursor before entering an ICD command.
Before your program starts its normal execution, ICD will print a greeting message at your terminal. At this point ICD is in control and is waiting for you to enter a command.
You only need to know three basic commands to begin using ICD: DISPLAY, to show the value of a variable; BREAK, to specify the source lines where you want your program to stop; and CONTINUE, to allow your program to continue its execution until the next breakpoint is reached. Set the breakpoints you need using the BREAK command. Then begin execution by entering:
CONTINUE
You can get more information by reading the section on COMPILING or see the SAMPLE SESSION which follows.
[bookmark: _Toc30328391]Sample Debugging Session
This section is included so that you can see how ICD might be used in a typical situation. The example is extremely simple but it does illustrate two important features of ICD - the ability to recover from a fault and the ability to examine variables. This second feature means that when you do get an error, you do not have to insert any PRINT statements into your program before starting to debug.
In the following example, commands that you type are underlined. When clarifying comments are included they follow the "%". You would not actually type these.
Suppose that you are debugging the following program. The error is obvious here -- it is even commented in the source listing -- but it illustrates how ICD can help you when you have a fatal programming error.
LIST COBOL74/INVALIDINDEX

1200 * Example COBOL program that demonstrates the use
1300 * of ICD to discover an INVALID INDEX error
1500 IDENTIFICATION DIVISION.
1700 ENVIRONMENT DIVISION.
1900 DATA DIVISION.
2100 WORKING-STORAGE SECTION.
2300 77 WS-INDEX PICTURE 9(4) COMPUTATIONAL.
2500 01 WS-TABLE.
2600 03 WS-ENTRY OCCURS 5 TIMES.
2700 05 WS-NUMBER PICTURE 9(4).
2900 PROCEDURE DIVISION.
3000
3100 MAIN-PROGRAM.
3200
3300 * Note: The table only has five entries, but the PERFORM
3400 * attempts to move something into the 6th entry
3500
3600 PERFORM LOAD-TABLE-ENTRY VARYING WS-INDEX FROM 1 BY 1
3700 UNTIL (WS-INDEX > 6).
3800 STOP RUN.
3900
4000 LOAD-TABLE-ENTRY.
4100 MOVE WS-INDEX TO WS-NUMBER (WS-INDEX).
4200
4300 END-OF-JOB.
[bookmark: _Toc30328392]Without ICD
Let's see the result when this program is run.
G DEBUGGER/COBOL74/INVALIDINDEX
#WORKFILE DEBUGGER/COBOL74/INVALIDINDEX: COBOL, 45 RECORDS, SAVED
COMPILE
#COMPILING 2994
#ET=6.8 PT=1.5 IO=0.7
RUN
#RUNNING 2995
#2995 INVALID INDEX @ (004200)
#F-DS @ 004200, 009:0007:3.
#ET=0.4 PT=0.1 IO=0.1
This type of error is a very common one. Typically, your next step is to insert some PRINT statements in your program and rerun. If you are a "wizard", you might consider getting a program dump. In any case, at this point you do not have much information to help you in your debugging.
[bookmark: _Toc30328393]With ICD
Now let's add the ICD compiler option, recompile and walk through a session.
100 $SET ICD
COMPILE WITH ICDCOBOL74
#COMPILING 2997
#ET=3.4 PT=1.6 IO=0.6
Before starting execution let's mention a few things about the debugging strategy we will use. The session begins with verification of as many lines as seem reasonable to assure that there are no obvious logic errors. With this step you execute your program, line by line, while examining variables. FIND (which works even if your SOURCE file is not available) is convenient for listing variable names. Then, after assuring yourself that there are no obvious mistakes, execution proceeds.

Run
#RUNNING 2998
%%
% ICD - Version 20.0 - (Compiled 06/27/2002) %
% Copyright 1984-2002 - ICD Group (302) 368-0538 %
%*** This is a new version of ICD. type HELP NEW to see a **
%*** summary of the new features **
%Type HELP for info on commands and NEW FEATURES %
%%
Auto-source file established:
 (BILL)COBOL/INVALIDINDEX ON SYMBOL.
BREAK at line 3600 of Mainline
=>003600 PERFORM LOAD-TABLE-ENTRY VARYING WS-INDEX FROM 1 BY 1
ICD> FIND	% Let's see what variables are declared
The following matches were found:
77 WS-INDEX PIC 9(4) USAGE IS COMPUTATIONAL
 defined at 002300
77 TEMP PIC 9(2)V9(2) USAGE IS DISPLAY
 defined at 002305
01 WS-TABLE PIC X(20) USAGE IS DISPLAY
 defined at 002500
 03 WS-ENTRY PIC X(4) USAGE IS DISPLAY
 defined at 002600
 05 WS-NUMBER PIC 9(4) USAGE IS DISPLAY
 defined at 002700
 MAIN-PROGRAM (Para name defined @ 00003600)
 LOAD-TABLE-ENTRY (Para name defined @ 00004100)
 END-OF-JOB (Para name defined @ 00004300)
 End of your variables
ICD> DISPLAY	% Display all variables
 WS-INDEX = 0 (0000)	% Leading zeros are shown in parens
 TEMP = 0.00
 WS-TABLE = "????????????????????"	% Unprintable chars show as "?"
All variables displayed
ICD> CONTINUE + 1	% Do one more statement
Continuing
=>004100 MOVE WS-INDEX TO WS-NUMBER (WS-INDEX).
ICD> DISPLAY WS-INDEX	% Now check the index again
 WS-INDEX = 1 (0001)
ICD> BREAK 4100	% Put in a breakpoint
1 BREAK was set
ICD> CONTINUE	% Let the program continue
Continuing
BREAK at line 4100 of Mainline
=>004100 MOVE WS-INDEX TO WS-NUMBER (WS-INDEX).
ICD> DISPLAY WS-INDEX	% We're at a break. Check index now
 WS-INDEX = 2 (0002)
ICD> BREAK - 4100	% Looks OK so delete breakpoint
1 BREAK was reset
ICD> CONTINUE	% Let the program continue
Continuing
Your program had a fatal error (Invalid Index) at line number 4200
You may not continue your program from this point
You may, however, DISPLAY variables
ICD> LIST	% Display where we are
 003900
 004000 LOAD-TABLE-ENTRY.
 004100 MOVE WS-INDEX TO WS-NUMBER (WS-INDEX).
=>004200
 004300 END-OF-JOB.
 *** End of List Output ***
ICD> DISPLAY WS-INDEX	% Does the index value make sense?
 WS-INDEX = 6 (0006)
ICD> DISPLAY WS-NUMBER(WS-INDEX)	% Try to use the index value
Subscript 1 for WS-NUMBER is out of range.
The maximum value = 5, actual value = 6	% THERE'S THE PROBLEM
ICD> QUIT

[bookmark: _Toc30328394]COMMANDS
The commands in the following section are discussed alphabetically. Each command includes a description, a syntax definition, and one or more examples. Every input to ICD must be one of the commands explained in this section. See below for a list of commands grouped by function. This manual uses railroad diagrams to illustrate the command syntax. If you are not familiar with railroad diagrams please see one of the several UNISYS manuals, including the CANDE manual, which explain them.
 A command can be abbreviated to the minimum number of characters that will make it unique. In the syntax diagrams the minimum allowed abbreviation is underlined. In the following examples the prompt from ICD ("ICD>") is shown just as it appears at your terminal. Any input that you would type is shown underlined and to the right of the prompt. The response from ICD to your command is shown as it appears at your terminal.
[bookmark: _Toc30328395]Commands by Function
[bookmark: _Toc30328396]	Telling your program where to stop
BREAK	?BP	?HI	STEP 	WHEN
[bookmark: _Toc30328397]	Displaying your variables
DISPLAY	EXAMINE
[bookmark: _Toc30328398]	Changing data
SET
[bookmark: _Toc30328399]	Getting information about your program and its variables
FIND	LIST	PRINT	SOURCE	COPYLIB	WHERE
[bookmark: _Toc30328400]	Getting HELP
HELP
[bookmark: _Toc30328401]	Controlling ICD's behavior and defaults
OPTION
[bookmark: _Toc30328402]	Telling ICD to resume execution of your program
CONTINUE
[bookmark: _Toc30328403]	Recording your debugging session
RECORD	PLAYBACK	DO
[bookmark: _Toc30328404]	Ending your ICD session
QUIT
[bookmark: _Toc30328405]	Windowing commands
WINDOW	WATCH 	ZOOM
[bookmark: _Toc30328406]?BP
[bookmark: _Toc30328407]Description
?BP is not an ICD command but rather a CANDE control command that ICD responds to. It is not a command that you type while ICD is paused and waiting for you to enter a command, rather you use ?BP when your program is running and you want to get control. ?BP interrupts your program immediately. That is, it will stop your program even if it is not currently at a line number corresponding to one of the breakpoints you specified.
This command can help you if you forget to set breakpoints in the proper place or if your program is in a loop.
[bookmark: _Toc30328408]Syntax
? -------------------------------------- BP ---------------------------------|
 | |
 |--- <mix number> ---|
[bookmark: _Toc30328409]Discussion
If you are familiar with how the ?HI command works with ICD, then you will see that this command works similarly. BP, however, is different from HI in two important respects. First, you must run your program with the TADS option set to allow ?BP to function. Secondly, when you do run it in this way, ICD delays the printing of its greeting message. (NOTE: If your COBOL74 program was compiled with the $ ICDPRODUCTION option set, then the TADS option will allow debugging, but may not delay the printing of the greeting message. See the discussion of $ ICDPRODUCTION in the section on Compiling Details).
Setting the TADS option is necessary to allow the ?BP to work later. There is a side-effect that occurs when you run your program with TADS set. ICD detects the TADS option and delays the printing of its normal greeting message. Instead, ICD DISPLAYs a message that it is waiting for a ?HI or ?BP command and your program continues its normal execution. (Note that you must have the CANDE option MSG set to see the display from ICD). Your program runs in its normal manner, the ICD remote file is not opened by ICD, and no debugging takes place until you enter ?BP or ?HI.
?BP is useful if your program is sharing a remote file with ICD. You may want your program to open the remote file first to set some attributes. Normally this is not possible because ICD opens the remote file and prints its greeting before the first statement in your program is executed. With the TADS option set, you can postpone the start of debugging dialog until you enter ?BP.
Example: First you set the CANDE MSG option to be sure that you see the display from ICD. Then start your program with the TADS option and enter ?BP when you are ready.
	SO MSG
	#MESSAGES SET
	R;TADS
	#RUNNING 3011
	#3011 ICD:Enter ?HI or ?BP to activate ICD
		< your program now begins its normal execution>
		< when you want debugging to begin you enter ?BP >
	?BP
	#?
	%%
	% ICD - Version 20.0 - (Compiled 06/27/2002) %
	% Copyright 1984-2002 - ICD Group (302) 368-0538 %
	% ICD Group World Headquarters : Newark, DE %
	%Type HELP for info on commands and NEW FEATURES %
	%%
	Auto-source file established:
	 (BILL)CANDE/TEXT2150 ON SYMBOL.
	Interrupt because of ?BP at line 7800 of Mainline
[bookmark: _Toc30328410]BREAK
[bookmark: _Toc30328411]Description
BREAK allows you to display, set or clear breakpoints. A breakpoint is a particular line number or paragraph name in your program where you want to suspend execution so that you can gain control. Any time a breakpoint is encountered during execution, your program halts and waits for an ICD command. You may set as many breakpoints as you want. They remain in effect until you clear them.	
[bookmark: _Toc30328412]Syntax
Setting breakpoints:
BREAK ------ < breakpoint list > --|
 | |
 |------ < when clause > -------|
Clearing breakpoints:
BREAK <hyphen> ------- < breakpoint list> -----------------------------------|
 | |
 |------------ ALL ----------|

<breakpoint list>
 |<------------ , ------------|
 | |
-------------------- < breakpoint > ---|

< breakpoint >
----- < line number > ---|
 | | | | | |
 |-- <paragraph name> --| |-- (<break count>) --| |-- IN <COPYLIB #> --|
 | |
 |------- BEGIN --------|
 | |
 |-------- END ---------|

<when clause>
--- WHEN <condition> --|
 | | | |
 |-- (<ICD commands>) --| |-- <WHEN options> --|
Note: For a complete description of the WHEN clause, see the WHEN command.
[bookmark: _Toc30328413]Discussion
Breakpoints are sequence numbers or paragraph names where you want your program to stop execution so you can enter ICD commands. The breakpoint list is simply a series of these breakpoints separated by commas.
When you use a paragraph name as a breakpoint, ICD uses the sequence number of the next source line after the paragraph name as a breakpoint. Therefore, if you have a section name followed by a paragraph name, use the paragraph name when setting the breakpoint.
[bookmark: _Toc30328414]Entering an invalid sequence number as a breakpoint
The ICD compiler creates a list of the source line numbers that you can use as breakpoints at run-time. These are the line numbers where you used a COBOL verb such as MOVE, COMPUTE, etc. If you enter an illegal line number as a desired breakpoint during debugging, ICD will detect this and suggest a valid line number in the neighborhood of the one you tried.
ICD> break 6401
6401 is not a valid breakpoint
Try 6300 or 7200
 006200 START-IT.
=>006300 COMPUTE COUNT-WD = 0.
 006400 *
 007200 IF COUNT-WD NOT EQUAL 0 GO TO SKIP-IT.
 007250 *
 007300 COPY "DEBUGGER/COBOL74/TESTCOPYLIBS/COPYLIB/PROCDIV".
 007350 *
[bookmark: _Toc30328415]Break Count - counting breakpoints
You can follow any sequence number by a number in parenthesis. This defines a "counting" breakpoint and indicates that you only want to pause when the statement has been reached "count" number of times.
Sets a counting breakpoint. In this example your program will stop at line 7100 when it is about to be executed for the 300th time

	ICD> BREAK 7100 (300)

[bookmark: _Toc30328416]Breakpoints in Copy Libraries
If you want to set a breakpoint in a COPY library, you need to add the modifier "IN <copy lib number>" after the sequence number. The "IN <copy lib number>" means that the preceding sequence number is in a copy library and not in your mainline program.
The ICD compiler assigns a number, beginning at 1, to each COPY statement that you use. You can use the COPYLIB command to show you the correspondence between these numbers and your actual COPY statements.
Set a breakpoint in your first copy library (see the COPYLIB command) and at the statement associated with a paragraph.

		ICD> BREAK 3210 IN 1 , END-IT-ALL
		2 BREAKs were set

[bookmark: _Toc30328417]WHEN clause (See the WHEN command for a complete description.)
The WHEN clause appears after the breakpoint list and applies to all sequence numbers in the list. It attaches a condition to each number in the list. Without a WHEN clause, your program pauses for ICD commands each time you reach one of the statements in your breakpoint list. With the WHEN clause, ICD tests the condition you entered with the WHEN each time you reach one of these statements. If the condition is TRUE, then your program pauses, and you can enter ICD commands. If the condition is FALSE your program continues.
The WHEN clause can be attached to a sequence number or sequence number list or it can be associated with all the lines in your program. To have it apply only to certain lines, use it as part of the BREAK command as illustrated here. To have it apply to all the lines in your program, use the WHEN command.
In this example you attach a WHEN condition to a sequence number. When you reach this statement during execution ICD tests the condition. If it is true your program pauses.

		ICD> BREAK 6800 WHEN var2 = var1
		1 BREAK was set
		ICD> WHEN					% show your WHEN conditions
		There is no Global WHEN condition
		WHENs associated with BREAKPOINTS
		 Label : Condition
		1 : VAR2 = VAR1

[bookmark: _Toc30328418]WINDOW mode and highlighted breakpoints
If you are in window mode (WIN +) lines that are breakpoints are highlighted when they are displayed. This also includes breakpoints that are the result of a STEP command since STEP sets a breakpoint at the next statement and then does a CONTINUE.
Here is how the display would appear when the window includes two highlighted breakpoints:

ICD> BREAK 2250, 2265

File title = (BILL)DEBUGGER/COBOL ON SYMBOL.
 002190 MOVE 2 TO Z-RESTART-PROCESS.
 002195**
 002200**
 002205 MOVE 0 TO Z-EXIT-CODE.
 002210 MOVE 9999 TO Z-EXIT-LEVEL.
 002215*---
 002220*>>>> PERFORM 100-TESTING.
 002225*---
 002230************ PERFORM 100-TESTING
=>002235 PERFORM Z-1-PROCEDURE THRU Z-1-XIT.
 002240 IF Z-EXIT-PROCESS
 002245 MOVE 0 TO Z-EXIT-LEVEL
 002250 MOVE 2 TO Z-EXIT-CODE
 002255 GO TO Z-2-END.
 002260 IF Z-EXIT-EDITEXIT
 002265 GO TO Z-2-XIT.

[bookmark: _Toc30328419]BEGIN and END as breakpoints
Using BEGIN and END as breakpoints allows you to set a break at the first and last lines of your procedure division. This is convenient when debugging a bound COBOL routine so that you can quickly set breaks that activate on each entry and exit to your routine.
[bookmark: _Toc30328420]Some BREAKPOINT examples:
Example 1: Set two breakpoints
	ICD> BREAK 7460, 7100
	2 BREAKs were set

Example 2: Remove two breakpoints
	ICD> BREAK - 7460, 7100
	2 BREAKs were reset

Example 3: Remove all of your breakpoints
	ICD> BREAK - ALL
	All BREAK points cleared

Example 4: Display all of your breakpoints. In this case you have two breaks set on paragraph names and one on a sequence number.
	ICD> BREAK
The following BREAKS are enabled:
START-IT = 6300 in Mainline
 7200 in Mainline
INCR-COUNT = 8400 in Mainline

[bookmark: _Toc30328421]CONTINUE
[bookmark: _Toc30328422]Description
CONTINUE allows your program to continue its execution until the next breakpoint is encountered.
[bookmark: _Toc30328423]Syntax
----------------- <a null or blank input line> -------------------------------|
 | |
 |-- CONTINUE ---|
 | |
 |---- + < statement count > -----|

<statement count>
-------------- < number > --|
[bookmark: _Toc30328424]Discussion
Using CONTINUE with <statement count> activates an "implied" breakpoint by setting an overall "statement counter". This counter is initially set to <statement count> and is decremented by 1 as each statement in your program is executed. When the statement counter is zero you have reached an implied breakpoint. Execution of your program is interrupted and ICD gets control.
Even while the statement count is not yet zero, your program may reach a statement contained in your breakpoint list (see the BREAKPOINT command). Your program will be interrupted but the statement counter is saved.
When you enter CONTINUE while at a breakpoint, any previous statement counter is maintained and will continue to be decremented. ICD will again gain control when either this counter reaches zero or a normal breakpoint is encountered.
[bookmark: _Toc30328425]Statement by statement execution
The <return> key (or null input or a blank input line) does statement by statement execution of your program. Pressing the <return> key is equivalent to entering "CONTINUE + 1." As such, it sets "statement counter" to 1. Your program executes one statement and then returns control to ICD.
[bookmark: _Toc30328426]Examples:
Example 1: Set a breakpoint and then allow the program to continue.
	ICD> BREAK INIT-ROUTINE
	1 BREAK was set
	ICD> CONTINUE
	Continuing
	BREAK at line 36010 in Mainline
Example 2: Let your program execute the next 5 statements.
	ICD> CONTINUE + 5
	continuing
Example 3: Shows the case where a breakpoint is reached while statement count is not yet zero. When you display your breakpoints, ICD tells you if you have any statement count remaining. Comments, shown after the "%", are for clarification; they were not actually entered.
	ICD> WHERE
	Currently at line 5500
	ICD> BREAK 5600		% Set a breakpoint
	1 Break set
	ICD> CONTINUE + 10	% also break after 10 more stmts
	Continuing
	Break at line 5600 in Mainline
	ICD> BREAK
	The following BREAKS are enabled
	5600
	The "Continue + <NUM>" command was used and your program
	will stop after executing 9 more lines.
[bookmark: _Toc30328427]COPYLIB
[bookmark: _Toc30328428]Description
ICD keeps track of the Procedure Division COPY statements you used during compilation, the sequence numbers in the Procedure Division where you used them, and the actual file names. Since you might use parts of a particular COPY file in several places throughout your program, ICD references each COPY statement by a COPYLIB number.
The COPYLIB command prints the COPYLIB numbers and actual file names for each copy statement that you used. These COPYLIB numbers are used in the BREAK command when you want to set a breakpoint in a COPY library.
If you need to, you can change these file titles. See the SOURCE command for details.
[bookmark: _Toc30328429]Syntax
COPYLIBS ---|
 | |
 |-------- <COPYLIB number> -----------|

[bookmark: _Toc30328430]Examples:

Example 1: Show all COPY libraries
	ICD> COPYLIB
	COPYLIB	Invoked at		COPYLIB name
	1			007200	(BILL)COBOL74/COPYLIB1 ON DISK
	2			007950	(BILL)COBOL74/COPYPARA2 ON DISK
	3			008900	(BILL)COBOL74/COPYLIBNAMECHK ON DISK

Example 2: Show a particular COPY library
	ICD> COPYLIB 2
	COPYLIB	Invoked at		COPYLIB name
	2			007950	(BILL)COBOL74/COPYPARA2 ON DISK

[bookmark: _Toc30328431]DISPLAY
[bookmark: _Toc30328432]Description
DISPLAY prints the value of a variable, an expression, a condition-name, a file or task attribute, or a series of variables. Variables are displayed using the PICTURE you used when you declared them in your program. Arithmetic expressions and attributes are displayed in the most appropriate format. If you display a file, then ICD prints a selection of that file's attributes. If a variable name needs to be qualified, normal COBOL rules apply.
You can also display a variable if you are in Windows mode (WINDOW +) by moving the screen cursor over a variable and hitting the SPECIFY KEY. ICD will display the value of that Variable.
[bookmark: _Toc30328433]Syntax:
DISPLAY --|
 | | | |
 |--- <variable list> ---| |--- < format > ---|

<variable list>
 |<---------------------- , ---------------------------|
 | |
-------------- <variable> --|
 | | | |
 | |--- (<subscript>) ---| |
 | |
 |------ <variable> ----- THRU ----- <variable > -------------|
 | | | |
 | |---- .. ----| |
 | |
 |------------- <attribute identifier> -----------------------|
 | |
 |------------------ <expression> -----------------------------|
 | |
 |------------- <relative statement number> -------------------|
 | |
 |----------------- < condition-name > ------------------------|

< attribute identifier >
ATTRIBUTE ----- <file attribute name> -- OF ------- <file-name> --------------|
 | |
 |-- <task attribute name> -- OF -------- MYSELF ---------|
 | |
 |----- MYJOB -------|
< condition-name >
 ---------------------- < a Level 88 variable > -----------------------------|

< expression >
 -------------- < a valid COBOL expression > -----------------------------|
< format >
 -------------------- : HEX ---|
< relative statement number>
* --|
 | |
 |---- + ----|---- < number > ------|
 | |
 |---- - ----|
< subscript >
---- <expression> --|
 | |
 |--- THRU --------- <expression> --------|
 | |
 |--- .. -----|

[bookmark: _Toc30328434]Discussion
[bookmark: _Toc30328435]Examples:
[bookmark: _Toc30328436]Displaying File Attributes
You can see individual attributes by using the COBOL74 syntax for specifying a file or task attribute identifier. If the attribute has a mnemonic value, ICD will print it unless the attribute identifier is part of an expression, in which case the numeric value is returned.
Display attributes of a file
	ICD> DISPLAY MASTER-FILE
	TITLE = (DEVELOPMENT)SOURCE/COBOL74/SALARYUPDATE ON DISK
	HOSTNAME = YOURSITE KIND = PACK INTMODE = EBCDIC
	EXTMODE = EBCDIC FILETYPE = 0

Display a particular file attribute
	ICD> DISPLAY ATTRIBUTE MAXRECSIZE OF CARD-FILE

[bookmark: _Toc30328437]Displaying all of your variables
You can display all your variables - simply enter DISPLAY.
Display all of your variables, showing alphanumeric values in hex.
	ICD> DISPLAY : HEX
[bookmark: _Toc30328438]Displaying variables that require more than one line
ICD splits long variables into multiple lines and replaces non-printing characters with "?"
	ICD> DISPLAY MASTER-REC
	MASTER-REC =
		"ICD Group, P.O. Box 15067 Newark, DE 19711 "
	.." (302) 368-0538 ???????????????"

[bookmark: _Toc30328439]Displaying a range of a subscripted variable
If you want to display a range of subscripted variables use THRU (or ..) to indicate a subscript range, i.e.
	DISPLAY VAR (2 THRU 5) or DISPLAY VAR (2 .. 5).
Display an expression and a subscripted variable range
	ICD> DISPLAY T+5 - (TEMP * 2), SUBSCRIPTED-VAR (2 .. 3)
	T+5 - (TEMP * 2) = 54.5
	SUBSCRIPTED-VAR (2) = 1.2
	SUBSCRIPTED-VAR (3) = 2.3

[bookmark: _Toc30328440]Using THRU (or ..) to display multiple variables
THRU (or ..) allows you to display multiple variables with one command. The two variables you specify and all variables declared between them are printed. Display using THRU does not display any subordinate items - only 77 and 01 level variables are displayed. If you want to use THRU and also see subordinate items, then use the EXAMINE command.
Use THRU to display multiple variables in the order they were declared in your program.
	ICD> DISPLAY 77-LEVEL-VAR THRU 01-LEVEL-VAR
		or alternatively
	ICD> DISPLAY 77-LEVEL-VAR .. 01-LEVEL-VAR
[bookmark: _Toc30328441]Expressions
To display the value of an expression just write it as you would in COBOL. Be sure to leave a space around "-" to avoid ambiguity between the minus sign and the "-" in variable names. ICD expressions can include variables; constants; the arithmetic operators +, -, /, and *; and the values TRUE (numeric value 1) and FALSE (numeric value 0).
[bookmark: _Toc30328442]Display format
Variables are displayed using the PICTURE that you used when you declared them in your program. In addition, if you are displaying a numeric variable that is declared as either DISPLAY or COMP, and the option DISPLAYLEADINGZEROES is set, then ICD also shows it in parenthesis with any leading zeros. Arithmetic expressions and attributes are displayed in the most appropriate format.
[bookmark: _Toc30328443]HEX format
If you indicate that you want HEX output (either by using the <format> modifier or the OPTION command), then the variable is also shown in hexadecimal.
Display a variable in hexadecimal in addition to its declared picture. You can set the HEX option (see the OPTION command) if you always want HEX output.
	ICD> DISPLAY WS-BASE-SALARY : HEX
	WS-BASE-SALARY = 325 (00325) @F0F0F3F2F5@
[bookmark: _Toc30328444] Display all the variables in a statement
This form of the Display statement allows you to display all the variables in a statement without having to enter each variable name. The current statement is represented by the "*". You can add + or - and a number to indicate some number of COBOL verbs relative to the current statement. Most often you'll use this to see the variables in the previous statement just after you have executed it.
ICD counts COBOL verbs not source lines when calculating "relative statement number". That means that if you are stopped with the following display:
	 008300DECR-COUNT.
	 008400 COMPUTE COUNT-WD = COUNT-WD - 1.
	 008405*
	=>008410 COMPUTE AA = AA / COUNT-WD - 1.
	 008500DECR-COUNT-END.
and you enter DISPLAY * you will see:
	ICD> DISPLAY *
	 AA = 0
	 AA / COUNT-WD - 1 = -1
as you would expect. To see the previous valid statement ICD does not count the comment card. So
	ICD> DISPLAY * - 1
	 COUNT-WD = 9999999999
	 COUNT-WD - 1 = 9999999998
Display all the variables (including constants) referenced in the COBOL verb you are about to execute. Or if you would like to see the previous (or next) verb just use "*" and + (or -) and a relative statement number.
	
	=>006500 COMPUTE GLOBAL-VAR1 = 22.
	ICD> DISPLAY *
	 GLOBAL-VAR1 = 0 (00)
	 22 = 22
	ICD> CONT + 1
	Continuing
	=>006600 MOVE " Hello from the global array " TO GLOBAL-ARRAY.
	ICD> DISPLAY * - 1
	 GLOBAL-VAR1 = 22
	 22 = 22
[bookmark: _Toc30328445]Displaying Condition Names
When you display a condition name ICD evaluates the condition and prints either TRUE or FALSE.
In this example, the variable "THIS-MONTH" is redefined with a Condition-name,"SPRING". You can display the Condition Name or the underlying condition variable.
Here is part of the definition of the conditions involving the variable THIS-MONTH.
003500 77 THIS-MONTH PIC 9(2) USAGE IS BINARY
003600 88 JANUARY VALUE 1

004700 88 DECEMBER VALUE 12
004800 88 SPRING VALUE 3 THRU 5

ICD> DISPLAY THIS-MONTH
 THIS-MONTH = 4

ICD> DISPLAY SPRING
 SPRING = True

You can do a FIND on the Condition Name to see what variable it references:
ICD> FIND SPRING
The following matches were found:
004800 88 SPRING VALUE 3 THRU 5
 refers to THIS-MONTH
 End of your variables

[bookmark: _Toc30328446]EXAMINE
[bookmark: _Toc30328447]Description
EXAMINE is used for displaying group items, such as 01 level variables, in a way that allows the elementary items instead of the group items to be shown. Instead of printing the group item itself, EXAMINE prints the value of each elementary item within that group.
So that you can control the depth to which values of elementary items are printed, EXAMINE lets you set a <level number>. For a variable that is declared at a level equal to or greater than <level number> the values of the elementary items are not shown. The variable is displayed as a group item.
[bookmark: _Toc30328448]Syntax
EXAMINE ---|
 | | | | | |
 |-- <level number> --| |--- <var list> ---| |--<format> --|

<var list>
 |<---------------------- , -------------------------------|
 | |
------------------- <variable> --|
 | | | |
 | |--- (<subscript>) ---| |
 | |
 |------ <variable> ----- THRU ----- <variable > -----------------|
 | | | |
 | |---- .. ----| |
 | |
 |------------------ <relative statement number> ----------------------|

<format>
------------------------------- : HEX --------------------------------------|
NOTE: See DISPLAY for a discussion of <format>, <subscript>, <relative statement number> and THRU.
[bookmark: _Toc30328449]Examples:
Example 1 : Examine all items under an 01 level
	ICD> EXAMINE WORKAREA2
	01 WORKAREA2
		03 AREA1
			05 AREA1-SUB1 = "AREA 1 "	
			05 AREA1-SUB2 = " "	
		03 AREA2 (1) = " "
		03 AREA2 (2) = " "
Example 2 : Examine the same variable but do not print elementary items greater than level 3.
	ICD> EXAMINE 3 WORKAREA2
	01 WORKAREA2
		03 AREA1= "AREA 1 "
		03 AREA2 (1) = " "
		03 AREA2 (2) = " "
Example 3 : Examine all the variables in your program
	ICD> EXAMINE
	77 COUNTER = 0
	77 LINE-NUMBER = 55
	...	
	01 WORKAREA2
		03 AREA1
			05 AREA1-SUB1 = "ICD Tes"	
			05 AREA1-SUB2 = "t Pro"	
		03 AREA2 (1) = "gram "
		03 AREA2 (2) = "# 3 "
	...
[bookmark: _Toc30328450]FIND
[bookmark: _Toc30328451]Description
FIND lists your program variables and their corresponding PICTURE declarations and also shows any paragraph names with the sequence number where they were declared.
If a program listing is not handy or the source file is not on disk, FIND lets you quickly see the variables you declared in your program.
[bookmark: _Toc30328452]Syntax
FIND ---|
 | | | |
 |--- < find count > ---| |-- <string to match > --|

< find count>
--------------------------------- < number> ------------------------------|
<string to match>
--------------------------------- < partial variable name > --------------|
[bookmark: _Toc30328453]Discussion
The variables you defined in your program and the sequence number where each was defined are printed. Each variable that either wholly or partially matches <optional string> will be printed. When you use < find count > it allows you to limit your search to a fixed number of matches

[bookmark: _Toc30328454]Example:
Search for variables in your program that begin with "WS-"

	ICD> FIND WS-
	The following matches were found
	001900 77 WS-INDEX		PIC 9(2) USAGE IS COMP
	002900 01 WS-TABLE		PIC X(160) USAGE IS EBCDIC
	003500 	03 WS-ENTRY	PIC X(32) USAGE IS EBCDIC
	004600 WS-001-OPEN		(Para name defined @ 007800)
	005800 WS-001-START	 (Para name defined @ 008500)

When FIND encounters Condition Names they are offset under the variable they reference.

	ICD> FIND
	The following matches were found:
	002300 01 REMOTE-FILE-REC PIC X(100) USAGE IS DISPLAY
	002405 05 MONTH-NUMBER PIC 9(2) USAGE IS DISPLAY
	003100 77 COUNT-WD PIC S9(11) USAGE IS REAL
	003500 77 THIS-MONTH PIC 9(2) USAGE IS BINARY
	003502 88 LONG-CONDITION-NAME VALUE 1, 2, 3, 4, 5, 6, 6, 8
	003600 88 JANUARY VALUE 1
	003700 88 FEBRUARY VALUE 2
	003800 88 MARCH VALUE 3
	004800 88 SPRING VALUE 3 THRU 5

If you do a FIND on a Condition Name ICD displays the condition variable that it references:

	ICD> FIND SPRING
	The following matches were found:
	004800 88 SPRING VALUE 3 THRU 5
	 refers to THIS-MONTH
	 End of your variables

[bookmark: _Toc30328455]HELP
[bookmark: _Toc30328456]Description
HELP prints a list of the valid ICD commands or gives a short description of a particular command.
[bookmark: _Toc30328457]Syntax
HELP ---|
 | |
 |-------- <string to match > -----------|

< string to match >
----------------------------- < a full or partial command > --------------|
[bookmark: _Toc30328458]Examples:

Example 1
ICD> HELP
You are running Version 20.0.1 of ICD
Your program was compiled with version 47.131.43 of COBOL74
VValid ICD commands are:
 BREAK, CONTINUE, DISPLAY, SET
 ?BP, Bye, Copylib, Examine, Find, ?Hi, List, Option
 Playback, Quit, Record, Source, Watch, Window, When, Where
 NOTE: The most commonly used commands are shown in CAPITAL
 letters. You may get more information on a particular
 command by entering HELP <command>(i.e. HELP SET)
 Finally, to see a short list of NEW ICD FEATURES, enter HELP NEW

ICD> HELP S
 => SET command
 SYNTAX SET <variable name> = <arithmetic expression>
 DESCRIPTION SET allows you to change the value of a variable.
 EXAMPLE : SET VAR1 = VAR1 + VAR2 *(35.4/8) + VAR3

 => SOURCE command
 SYNTAX SOURCE <optional file name>
 DESCRIPTION SOURCE tells ICD the file title of the disk file
 containing your COBOL program. If you used copy
 libraries in your program then ICD will also
 prompt you about changing these file titles
 when you use the SOURCE command.
ICD> HELP NEW
You are running Version 20.0.1 of ICD
 => NEWFEATURES command
 NEW FEATURES
 Listed below are the major features of each ICD release
 beginning with the latest release. For more detail enter
 HELP followed by the first few letters of a command or
 see the ICD manual.

 Version 20 (Spring 2002)
 - DISPLAYING CONDITION NAMES - Level 88 Variables
 ICD now evaluates Conditions and displays the result,
 either TRUE or FALSE. Previously ICD simply displayed the
 value of the variable that the condition referenced.
[bookmark: _Toc30328459]? HI
[bookmark: _Toc30328460]Description
?HI is not an ICD command but rather a CANDE control command that ICD responds to.
It is not a command that you type while ICD is in control and waiting for a command, rather you type it when your program is running and you want to get control. ?HI interrupts your program immediately. That is, it will stop your program even if it is not currently at a line number corresponding to one of the breakpoints you specified.
This command can help you if you forget to set breakpoints in the proper place or if your program is in a loop.
[bookmark: _Toc30328461]Syntax
? -------------------------------- HI---|
 | | | |
 |--- <mix number> ---| |--- <HIVALUE value>---|

<HIVALUE value >
--------------------------------- < number > ---------------------------------|
[bookmark: _Toc30328462]Discussion
Issuing the ?HI command causes your program's EXCEPTIONEVENT. The debug environment created by the ICD compiler allows ICD to gain control at any point in your program's execution, just as if you had set a breakpoint there.
If your COBOL program is already written to respond to a ?HI, then you will have a USE AS INTERRUPT PROCEDURE in your DECLARATIVES. In this case, entering ?HI will cause both your COBOL interrupt procedure and ICD to be entered. After your own COBOL interrupt code is completed, your ICD dialog begins.
If you are already using an interrupt procedure, you may not want ICD to respond to ?HI. You can control this by requiring that ?HI has to be followed by an integer when you want ICD to respond. This integer must correspond to the value you specify as the HIVALUE using the OPTION command. ICD only responds to ?HI when that particular integer follows the ?HI.
NOTE : See the BP command for another method of interrupting a running program.
[bookmark: _Toc30328463]Example:

Example 1 : Interrupt a running program.
	ICD> CONTINUE
	Continuing
	#1616 DISPLAY : STARTING.
		< some period of time elapses >
	?HI
	Interrupt because of ?HI at line 2810 of Mainline
	=>002810 IF A = -1 GO TO PARA-2.
Example 2 : Interrupt a running program that requires a HIVALUE.
	ICD> OPT HIVALUE 95		% Set the HiValue
 HIVALUE is Set
	ICD> OPT			% Check the HiValue setting
 OPTION settings:
 HI interrupt trapping is ENABLED.
 Required HI value is : 95
	 . . .
	ICD> CONTINUE
	Continuing
	?HI 95			% Now interrupt the program
	Interrupt because of ?HI at line 2700 of Mainline
	=>002700 COMPUTE C = A - B.
[bookmark: _Toc30328464]LIST / PRINT
[bookmark: _Toc30328465]Description
LIST (or PRINT) is used to display source lines from your program.
LIST alone prints a small "window" of source lines around the line where you are currently stopped. If you are in your main program, then lines will be printed from there; if you are in a COPYLIB, its source will be used instead. The source line that you are ABOUT to execute will be highlighted with an arrow "=>" in the left margin.
You may list specific parts of your program by following LIST with a range of sequence numbers.
ICD keeps track of what file was used the last time you listed any lines. Any time source lines are shown from a different file, the new file title is displayed.
[bookmark: _Toc30328466]Syntax

LIST --|
 | | | | |
PRINT --| |--- < sequence range > ---| |----- < copylib id > -----|

<sequence range>
------------------------------ FOR < number > -------------------------------|
 | |
 |--- <sequence number> ---|
 | |
 |-- <hyphen> --- < sequence number > ---|
 | |
 |------------ FOR < number > -----------|

<copylib id>
--------------------------------------- IN <number> -------------------------|

[bookmark: _Toc30328467]Example:

Example 1 :
	ICD> LIST
	 002400 PARA-1A.
	 002500 COMPUTE A = A + 1.
	 002600 COMPUTE B = B - 1.
	=>002700 COMPUTE C = A - B.
	 002800 COMPUTE D = B - A.
	 002805 *
	 002810 IF A = -1 GO TO PARA-2.
	 *** End of List Output ***
	ICD> LIST 1 - 500
	 000002 $ RESET LIST$ LISTOMITTED
	 000004 $ RESET LIST LIST$ CODE STACK
	 000300 $SET ICD
	 000500 IDENTIFICATION DIVISION.
Example 2: List the next 4 lines from the source file beginning with the line where you are currently stopped.
	ICD> LIST FOR 4
	=>002700 COMPUTE C = A - B.
	 002800 COMPUTE D = B - A.
	 002805 *
	 002810 IF A = -1 GO TO PARA-2.
	 *** End of List Output ***
Example 3: List lines from a COPYLIB file
		ICD> LIST 5000 FOR 4 IN 2

[bookmark: _Toc30328468]OPTION
[bookmark: _Toc30328469]Description
The OPTION command allows you to turn on (+), turn off (-), or display various run-time options that control ICD functions.
[bookmark: _Toc30328470]Syntax
Displaying OPTIONS:
OPTION
Turning OPTIONS ON and OFF:
OPTION ------------------------- < option list > ------------------------|
 | |
 |--- + ----|
 | |
 |--- - ----|

<option list>
 |<-------------------- , ----------------------------|
 | |
---|
 | |
 |------------------ HEX -----------------------------|
 | |
 |--------------- HEXGROUP ---------------------------|
 | |
 |------------------ HI ------------------------------|
 | |
 |--------------- HIVALUE < integer > ------------------|
 | |
 |------------ DISPLAYLEADINGZEROES ------------------|
 | |
 |--------------- REUSECOMMANDLINE ---------------------|
 | |
 |------------------ TD ----------------------------|
 | |
 |------------------ MT ----------------------------|
 | |
 |------------------ T27 ---------------------------|
 | |
 |----------------- ANSII --------------------------|
 | |
 |---- TRACE ---|
 | | | |
 | |-- SPEED --- <integer> ---| |
 | |
 |-------------- UNDIGITCHECK ----------------------|
 | |
 |---------------- ZOOMOUT -------------------------|

[bookmark: _Toc30328471]Discussion
OPTION lets you turn on (+), turn off (-), or display various options that control how ICD behaves. To see the current status of your options just enter OPTIONS.
To set an option, just enter the option name after the OPTION command (the + is optional for setting an option). If an option requires a value, then it must immediately follow the option. To reset an option just enter "-" and then the option or options you want to turn off.
Options that are SET by default are DISPLAYLEADINGZEROES and REUSECOMMANDLINE.
You only need to type as much of the option name as is needed to make it unique. For example entering OPT - DIS will turn off the display of leading zeros. The valid OPTIONS and their functions are:
[bookmark: _Toc30328472]HI
HI - when SET, entering ?HI or ?<mix number>HI will interrupt your program wherever it is, even if you have no currently active breakpoints.
[bookmark: _Toc30328473]HIVALUE
HIVALUE <integer> - If your program already uses ?HI for special purposes, you can require that a value must be entered with the ?HI when you want ICD to respond. You specify this value by entering OPTION HIVALUE <integer>.
[bookmark: _Toc30328474]HEX
HEX - When this option is set every variable is shown in HEXADECIMAL (COMP in COBOL74) form. This is in addition to its normal form.
[bookmark: _Toc30328475]HEXGROUP
HEXGROUP - When set group items are shown only in HEXADECIMAL (4 Bit) format. Elementary items are shown normally and in HEX.
[bookmark: _Toc30328476]DISPLAYLEADINGZEROES
DISPLAYLEADINGZEROES - When set, numeric items (except those defined as COMP-4 or COMP-5) are shown with leading zeros. This option is Set by default.
[bookmark: _Toc30328477]REUSECOMMANDLINE
REUSECOMMANDLINE - When set, ICD does not clear the command line after each command. This option allows you to re-use or edit the a command. The REUSECOMMANDLINE option is Set by default. You can use the WINDOW REFRESH command to clear the command line.
[bookmark: _Toc30328478]UNDIGITCHECK
UNDIGITCHECK - Packed decimal data (COMP in COBOL74) can only contain the numeric digits 0 thru 9. The undigits @C@ and @D@ and @F@ are allowed in the sign position if the picture allows for a sign. When you set this option, it forces ICD to check that these conditions are met every time you use a COMP variable in an ICD DISPLAY or SET command.
[bookmark: _Toc30328479]TD, MT, T27 or ANSII
 TD, MT, T27 or ANSII - When you set this option you inform ICD that you have a TD, MT or ANSII (VT100) terminal. ICD will then send output to your terminal a page at a time. In addition, ICD will home the cursor (and clear the command line see REUSECOMMANDLINE) before requesting input from you.
[bookmark: _Toc30328480]TRACE
TRACE modifies the behavior of the CONTINUE command. When you issue the CONTINUE command while TRACE is set ICD pauses briefly at each statement and updates the SOURCE window and WATCH window (if present). The length of the pause is governed by the value in the SPEED modifier. ICD then automatically continues to the next statement. The SOURCE window update consists of moving the location pointer ("=>") to the statement about to be executed. When WATCH is also active all WATCH expressions are updated at this time.
The TRACE option may only be set after you have used the OPTION command to specify your terminal type and the WINDOW command to establish a source window.
Interrupting TRACE: If you need to stop your program while it is TRACing just enter a blank line(i.e. <space> XMIT). This will interrupt your program and put you in ICD command mode. Normal breakpoints will also stop your program: your program will pause when you reach any breakpoint or exhaust the count if you used CONTINUE + <count>.
You can control how long ICD pauses at each source line by setting SPEED when you set trace or you can adjust speed later with OPT TRACE SPEED. When the speed is set to 10, the fastest speed, it may be difficult to interrupt your program by entering some input. This is because ICD does not pause at each statement at this speed. Try 9 if you want to interrupt before you reach a break point. Be sure to use CONT + <number> or set a break point too.
[bookmark: _Toc30328481]ZOOMOUT
ZOOMOUT allows you to "zoom out" the source display to a higher level so that you see only paragraph names. ZOOMOUT assumes that you are in windows mode (WIN +). ZOOMOUT may help you see the larger context of your program.
When ZOOMOUT is set ICD tries to display only paragraph names in the source display. ICD skips comments (Col 7 containing "*") and source lines that are blank in cols 8-12. Any other source lines that have content in cols 8-12 are assumed to contain paragraph names.
Source window display before setting option ZOOM.
ICD>

File title = (BILL)DEBUGGER/COBOL74/TESTCOPYLIBS ON SYMBOL.
 00380077 AA REAL.
 00390077 BB REAL.
 004000*
 004005 COPY "DEBUGGER/COBOL74/TESTCOPYLIBS/COPYLIB/WS.".
 004100 77 COUNT-WD REAL.
 004200PROCEDURE DIVISION.
 006000*
 006100 MAIN SECTION.
 006200 START-IT.
=>006300 COMPUTE COUNT-WD = 0.
 006400*
 007200 IF COUNT-WD NOT EQUAL 0 GO TO SKIP-IT.
 007250*
 007300 COPY " DEBUGGER/COBOL74/TESTCOPYLIBS/COPYLIB/PROCDIV".
 007350*
 007500

After setting the OPT ZOOM and stepping through your code (hitting XMT) to do a line at a time the status line shows you what line you are currently on. The display shows you are somewhere between lines 6200 and 7800. The status line shows you are at line 7200.
ICD>

File title = (BILL)DEBUGGER/COBOL74/TESTCOPYLIBS ON SYMBOL.
 003600 03 FILLER PICTURE X(36).
 003700WORKING-STORAGE SECTION.
 00380077 AA REAL.
 00390077 BB REAL.
 004005 COPY "DEBUGGER/COBOL74/TESTCOPYLIBS/COPYLIB/WS.".
 004100 77 COUNT-WD REAL.
 004200PROCEDURE DIVISION.
 006100 MAIN SECTION.
=>006200 START-IT.
 007800SKIP-IT.
 008300 INCR-COUNT.
 008500 INCR-COUNT-END.
 008700 END-IT-ALL.
 000100$SET ICD
 000100$SET ICD
 007500

BREAK at 7200
[bookmark: _Toc836619][bookmark: _Toc30328482]ZOOM is set but the file has no paragraph names !
In this case we're in a COPY Lib file just has a few source statement but no paragraph names. So when you enter there in ZOOM mode there is nothing to display ! Here's what you get :
ICD>

=>

BREAK at 4210

The locator , "=>", just points to the first line of the source window. But the status line at least shows what line we're on. You can cancel ZOOM and get this :
ICD> opt - z
 Zoomout to Para names is ReSet

File title = (BILL)DEBUGGER/COBOL74/TESTCOPYLIBS/COPYLIB/PROCDIV ON SYMBOL.
C 002000*
C 002005* This code is from the copylib
C 002010*
C 002015*
C 002020* This code is from the copylib
C 002025*
C 003000*
C 003005* This code is from the copylib
C 003010*
C 004201*
C 004204* This code is from the copylib
C 004207*
=>004210 COMPUTE COUNT-WD = 765.
C 004213 COMPUTE COUNT-WD = 770.
C 004216 COMPUTE COUNT-WD = 785.
C 004219 COMPUTE COUNT-WD = 790.

BREAK at 4210

[bookmark: _Toc30328483]Examples:

Example : Require a value when interrupting with HI
ICD> OPT HIVALUE 95
 HIVALUE is Set
Example : Display your option settings
ICD> OPT
 OPTION settings:
 HI interrupt trapping is ENABLED.
 HEX option is DISABLED
 HEXGROUPITEMS option is DISABLED
 DISPLAYLEADINGZEROES option is ENABLED
 UNDIGITCheck option is DISABLED
 DEBUGGING option is DISABLED
 TD/MT option is DISABLED
 HP option is DISABLED
 ANSII option is DISABLED
 REUSECOMMAND option is ENABLED
 ZoomOut option is DISABLED

[bookmark: _Toc30328484]PLAYBACK / DO
[bookmark: _Toc30328485]Description
PLAYBACK reads a disk file containing ICD commands and reprocesses them. The file that is read is normally the output from a previous RECORD command but it can be a CANDE DATA file that you created. After ICD reprocesses all records from the RECORDed file, you may enter more ICD commands.
DO is a synonym for PLAYBACK.
[bookmark: _Toc30328486]Syntax
PLAYBACK -------------- < file title > --------------------------------------|
 | | |
DO----------------| |----- : SILENT -----|
[bookmark: _Toc30328487]Discussion
When you use PLAYBACK, ICD reads the RECORDed file until it finds a record with the ICD prompt (ICD>). There will be a command after the prompt and ICD reprocesses that command. All other records in the RECORDed file are skipped. Therefore, you do not need to eliminate ICD responses before reprocessing the RECORDed file.
If you make a PLAYBACK file with CANDE, remember that each command must be preceded by the ICD prompt (ICD>).
SILENT - The :SILENT option is allowed with the DO command and its synonym, PLAYBACK. DO <file > :SILENT does the commands in your file but normal command output is suppressed at your terminal.
Note: See the RECORD command for a related discussion.
[bookmark: _Toc30328488]Example

ICD> PLAYBACK SESSION/121395
PLAYBACK file established
ICD> LIST
 005100 END DECLARATIVES.
 005200 THE SECTION.
 005300 START-IT.
=>006500 COMPUTE GLOBAL-VAR1 = 22.
 006600 MOVE " Hello from the global array " TO GLOBAL-ARRAY.
 006700 *
 006800 OPEN OUTPUT PR.
 *** End of List Output ***
ICD> RECORD -
End of reading PLAYBACK file

[bookmark: _Toc30328489]QUIT
[bookmark: _Toc30328490]Description
QUIT is equivalent to entering ?DS. It terminates your program.
To prevent you from accidentally QUITting your program, you must fully type the QUIT command. It cannot be abbreviated.
[bookmark: _Toc30328491]Syntax
QUIT
[bookmark: _Toc30328492]Example:
ICD> QUIT
Quitting

[bookmark: _Toc30328493]RECORD
[bookmark: _Toc30328494]Description
The RECORD command lets you save a copy of your debugging session in a disk file.
[bookmark: _Toc30328495]Syntax
Turning on recording
RECORD <file title>
Turning off recording
RECORD -
Inquiring
RECORD

[bookmark: _Toc30328496]Discussion
When you are RECORDing, all ICD commands that you type and all ICD responses are saved in a CANDE DATA file. Later, using the PLAYBACK command, you can reprocess a session.
If you need to change some commands, you can edit the RECORDed file before you use PLAYBACK. You may also create the PLAYBACK file entirely with CANDE.
[bookmark: _Toc30328497]Example :

ICD> RECORD SESSION/121395
RECORD file established
ICD> LIST
 005100 END DECLARATIVES.
 005200 THE SECTION.
 005300 START-IT.
=>006500 COMPUTE GLOBAL-VAR1 = 22.
 006600 MOVE " Hello from the global array " TO GLOBAL-ARRAY.
 006700 *
 006800 OPEN OUTPUT PR.
 *** End of List Output ***
ICD> RECORD -
Closing old RECORD file

ICD> RECORD SESSION/121395
Closing old RECORD file
Adding to a previous RECORD file
ICD> RECORD
The RECORD file title is : (GRAHAM)SESSION/121395 ON PGMDEV.
ICD> RECORD -
Closing old RECORD file
ICD>

[bookmark: _Toc30328498]SET
[bookmark: _Toc30328499]Description
SET allows you to change the value of a variable.
[bookmark: _Toc30328500]Syntax

SET ------------ <variable name> ---------------- = --- < expression > ----|
 | |
 |--- < file attribute identifier > ---|

<file attribute identifier >
ATTRIBUTE -- <attribute name> -- OF -- <file-name> ---------------------------|

<expression>
------------------ < a valid COBOL expression > ------------------------------|
 | |
 |---------- < undigit literal > ---------|

< undigit literal >
--------------- @ < hexadecimal digits 0 through F > @------- ---------------|

An undigit literal is a string of characters that represents the hexadecimal equivalent of an EBCDIC character or binary number.

[bookmark: _Toc30328501]Discussion
This command can be useful if, by changing a value of a variable, you can further test your program and thereby gain more information from your current debugging session.
Remember that any changes you make with the SET command do not make permanent changes to your program and apply only to the current execution. You must change the source file and recompile your program to make the changes permanent.
However it is important to note that you can make changes to disk files and databases if you allow your program to write to disk or perform a DMS update.
[bookmark: _Toc30328502]Example :
	ICD> SET GLOBAL-VAR1 = GLOBAL-VAR1 + 50
	ICD> SET WS-TABLE (5) = WS-TABLE (6) - 25
	ICD> SET ATTRIBUTE MAXRECSIZE OF MY-FILE = WS-TEMP * 6
	ICD> SET ATTRIBUTE OPEN OF AUDIT-FILE = FALSE
Using the undigit literal

	ICD> SET CARRIAGE-RETURN = @0D@

[bookmark: _Toc30328503]SOURCE
[bookmark: _Toc30328504]Description
You use the SOURCE command to associate a file title with either your mainline program or any Procedure Division copy libraries you used. Although ICD tries to automatically find and display source lines from your mainline and all copy libraries, these files may not be available. If you intend to use the LIST command, and ICD could not locate your files, you may use the SOURCE command to specify new titles. You may also use SOURCE to inquire about the current settings.
[bookmark: _Toc30328505]Syntax
Setting the mainline file title
SOURCE < file name >
Inquiring
SOURCE
Entering dialog mode for a program containing COPY statements
SOURCE
[bookmark: _Toc30328506]Discussion
When execution begins, ICD attempts to locate the source to your mainline program. If you are executing an updated work file, ICD will find it and use it as the source. If your program name begins with OBJECT (i.e. OBJECT/S/100), then ICD will follow the CANDE naming convention and try to find your source as S/100. Finally if you compiled your program using the $ MERGE compiler control card to specify a source file, ICD will use the title you used on the MERGE card as its source file.
ICD does not try to locate any copy libraries until you either enter a breakpoint in one or you use the LIST statement to list lines from a copy library. If your program contains copy libraries in the Procedure Division, then each time you pause at a breakpoint in one of them, ICD tries to find the appropriate source file and print from it. If ICD cannot locate the proper file, you can supply the file title yourself. Simply enter the command, SOURCE. ICD will enter into a dialog with you and allow you to change any titles.
Inquiring
The SOURCE command behaves differently when you are inquiring, depending on whether or not your program contains COPY statements. If your program does not contain any COPY statements, entering SOURCE displays the setting of your mainline source file. If you have COPY statements, then entering the SOURCE command displays the mainline source title, displays the currently open COPYLIB file title and finally enters a dialog mode so that you can make changes.
[bookmark: _Toc30328507]Examples :

ICD> SOURCE
COBOL source file : (GRAHAM)DEBUGGER/COBOL74/BINDING/HOST ON SYMBOL

ICD> SOURCE DEBUGGER/COBOL74/HIINTERRUPT
MAINLINE sourcefile opened

ICD> SOURCE FILE/NOT/THERE
File not opened
Title was :FILE/NOT/THERE.
[bookmark: _Toc30328508]STEP
[bookmark: _Toc30328509]Description
The STEP command allows you to "step over" a statement.
[bookmark: _Toc30328510]Syntax

STEP ---|
 | |
 |----- < sequence number > -----|

[bookmark: _Toc30328511]Discussion
STEP lets you "step over" a COBOL verb. It is particularly useful when you want to bypass code that is executed by a PERFORM statement. This STEP allows you to do the PERFORM code and stop again at the statement following the PERFORM.
To implement STEP ICD sets a break point at the next statement following the "target" of the STEP command and then does an automatic CONTINUE command.
[bookmark: _Toc30328512]Example
In this example you are in windows mode and stopped at a PERFORM statement. This particular PERFORM does several things , including DISPLAYing messages to the operator. After the STEP you are back to the statement following the PERFORM and your DISPLAY messages are on the screen.
As a result of hiliting break points on the screen they also show up when you STEPOVER a statement.

ICD>

File title = (BILL)DEBUGGER/COBOL ON SYMBOL.
 002210 MOVE 9999 TO Z-EXIT-LEVEL.
 002215 *--
 002220 *>>>> PERFORM 100-TESTING.
 002225 *--
 002230 ************ PERFORM 100-TESTING
=>002235 PERFORM Z-1-PROCEDURE THRU Z-1-XIT.
 002240 IF Z-EXIT-PROCESS
 002245 MOVE 0 TO Z-EXIT-LEVEL
 002250 MOVE 2 TO Z-EXIT-CODE
 002255 GO TO Z-2-END.
 002260 IF Z-EXIT-EDITEXIT
 002265 GO TO Z-2-XIT.
 002270 MOVE 0 TO Z-EXIT-CODE.
 002275 MOVE 9999 TO Z-EXIT-LEVEL.
 002280 *
 002285 *--

Now do the STEP command.
ICD> STEP
Continuing
#8346 DISPLAY:WS VALUE3 55555.
#8346 DISPLAY:WS VALUE155555.
#8346 DISPLAY:LITERAL ONE LIT2 OF 9.
#8346 DISPLAY:WS-LIT-3WS LITERAL.
BREAK at line 2240 of Mainline
 002220 *>>>> PERFORM 100-TESTING.
 002225 *---
 002230 ************ PERFORM 100-TESTING
 002235 PERFORM Z-1-PROCEDURE THRU Z-1-XIT.
=>002240 IF Z-EXIT-PROCESS
 002245 MOVE 0 TO Z-EXIT-LEVEL
 002250 MOVE 2 TO Z-EXIT-CODE
 002255 GO TO Z-2-END.
 002260 IF Z-EXIT-EDITEXIT
 002265 GO TO Z-2-XIT.
 002270 MOVE 0 TO Z-EXIT-CODE.
 002275 MOVE 9999 TO Z-EXIT-LEVEL.
 002280 *
 002285 *---

Note that the DISPLAY output and the ICD command are still shown on the screen. This is because the REUSECOMMAND option is set by default. You can use a WIN REFRESH command to refresh the screen.
ICD>

File title = (BILL)DEBUGGER/COBOL ON SYMBOL.
 002210 MOVE 9999 TO Z-EXIT-LEVEL.
 002215 *---
 002220 *>>>> PERFORM 100-TESTING.
 002225 *---
 002230 ************ PERFORM 100-TESTING
 002235 PERFORM Z-1-PROCEDURE THRU Z-1-XIT.
=>002240 IF Z-EXIT-PROCESS
 002245 MOVE 0 TO Z-EXIT-LEVEL
 002250 MOVE 2 TO Z-EXIT-CODE
 002255 GO TO Z-2-END.
 002260 IF Z-EXIT-EDITEXIT
 002265 GO TO Z-2-XIT.
 002270 MOVE 0 TO Z-EXIT-CODE.
 002275 MOVE 9999 TO Z-EXIT-LEVEL.
 002280 *
 002285 *---
[bookmark: _Toc30328513]STEP command on IF statements
Note : When you are at an IF statement you may not get the behavior you want with STEP. STEP cannot reliably step over an entire IF statement. It will set a break at the next COBOL verb, which may be part of the IF. For example if you are on line 6200 and do a STEP you will stop on the next verb, which is at 6300.
 005700 PROCESS : MAIN.
 005800 READLOOP EMPINFO.
 005900 BREAKTEST COMPUTE-SAL.
 006000 ENDLOOP
 006100 FMT-DISPLAY("SALARY RPT COMPLETED").
=>006200 IF X = 5
 006300 MOVE A TO B.
 006400 ADD 1 TO X.

[bookmark: _Toc30328514]WATCH
[bookmark: _Toc30328515]Description:
The WATCH command is used to specify an expression that ICD will continuously display and update in the WATCH window.
[bookmark: _Toc30328516]Syntax:
Displaying WATCH expressions and their identifying labels
WATCH
Setting a WATCH expression
WATCH < expression >

<expression>
	is a valid COBOL expression
Canceling a WATCH expression
WATCH - < Watch label >

< Watch label >
	 is an integer identifying one of the WATCH expressions you entered.
Canceling all WATCH expressions
WATCH - ALL
[bookmark: _Toc30328517]Discussion:
Using the WATCH command allows you to automatically display a variable or expression at every breakpoint without having to type the DISPLAY command. Each expression that you define is automatically assigned an integer identifier that you can use to cancel the expression later. The WATCH expressions are updated whenever ICD is in control - that is at every statement if TRACE is on or you are single stepping through your program by entering XMIT and also whenever you reach a breakpoint.
Before you can enter a WATCH command you must have used the OPTION command to indicate the type of terminal you have and the WINDOW command to establish a WATCH window.
WATCH expression display is limited to a single line - except for the last expression on your screen. If you are WATCHing a variable that requires more than one line to display make sure it is the last WATCH expression that you specify so that it can wrap to the next line. Each WATCH expression starts on the line below the previous one.
HINT: Another way to avoid having to retype a long command is to record it and then play it back :

	RECORD QUICKDISPLAY
	DISPLAY A + B + C - D * 5.25
	RECORD -
	PLAYBACK QUICKDISPLAY
[bookmark: _Toc30328518]Example:
 Sample screen after you have entered a WATCH command to see the label associated with each expression. The label is assigned automatically as you enter each WATCH expression. You use the label when canceling WATCH expressions.

ICD> WATCH
 WATCH conditions
 Label : Expression
 1 : VAR1
 2 : PRFT * PRFT * 0.05
 3 : (AMOUNT + 5) / 2
			006400	001-OPEN.
			006500	001-START.
			006501		OPEN INPUT CARD-FILE.
			006505	*	COMPUTE X = X / 0.
			006600		MOVE "AREA 3 " TO AREA3 OF WORKAREA.
			006700		COPY "DEBUGGER/COBOL74/TESTCOPYLIBS/COPYLIB1".
			006800	DUMMY-PARA-3.
 =>	006900		MOVE SPACES TO WORKAREA2.
			007000		COPY "DEBUGGER/COBOL74/TESTCOPYLIBS/COPYLIB2".
			007100		MOVE SPACES TO WORKAREA2.
			007200	*	COPY "DEBUGGER/COBOL74/TESTCOPYLIBS/COPYLIB1"
			007300	*		REPLACING "DUMMY-PARA-1" BY "DUMMY-PAR-1".
			007305	DUMMY-PARA-4.
 WATCH Window
 VAR1 = 2
 PRFT * PRFT * 0.05 = 0.145
 (AMOUNT + 5) / 2 = 3.5

[bookmark: _Toc30328519]WHEN
[bookmark: _Toc30328520]Description
The WHEN command is one of ICD's most powerful features. It allows ICD to watch your variables at run-time and decide whether to pause based on their current values. If the value of the variables ever reaches the condition that you set, then a breakpoint automatically occurs, ICD gains control, and you can enter ICD commands.
The WHEN command establishes a condition for ICD to test. The actual testing of the condition, and decision about whether to break, happens while your program is running - after you have entered CONTINUE.
In the simplest case, a WHEN statement includes only a condition. However you can include one or more ICD commands that you want to have executed whenever the WHEN condition becomes true.
Finally, a WHEN condition can be appended to a BREAK command, so that the condition is only tested at specific statements. This is significantly more efficient than testing the condition at every statement, as the WHEN does. See the BREAK command for information on how to attach a WHEN condition to a breakpoint.
[bookmark: _Toc30328521]Syntax
Establishing WHEN conditions:
WHEN -- < condition > ---|
 | | | |
 |--- (<ICD commands>) ---| |--- : < options > ---|
Clearing WHEN conditions:
WHEN <hyphen > ------------ <WHEN Label> ------------------------------------|
 | |
 |------------- ALL -------------------|
 | |
 |----- < wildcarded WHEN label > -------|
Interrogating:
	WHEN

<condition>
		a valid COBOL condition (See the discussion below for details).

<ICD commands>
 |<----------------- ; -------------------|
 | |
------------------------ < ICD command > --------------------------------|

<wildcarded WHEN label>
--------------- < first few characters of a label > ------ * ----------|

<options>
 |<------------------- , -------------------------------|
 | |
---|
 | |
 |--- LABEL --------------- < string > ----------------------|
 | | | |
 | |--- = ---| |
 | |
 |----------------------------- SILENT ----------------------|

[bookmark: _Toc30328522]Discussion
General
Sometimes, while debugging, you are faced with the problem that a variable is being changed but you are not sure in what part of your program the change is taking place. You want to tell ICD to stop your program as soon as that variable changes, no matter where it might happen. The WHEN statement is designed to provide you with this ability.
After you have entered a WHEN statement, you continue your program's execution by entering CONTINUE. As each COBOL statement is reached, ICD checks the condition and the following takes place:
If the condition is TRUE, then ICD tells you, your program pauses, and you can then enter any ICD command.
If the condition is FALSE, then your program continues to the next statement.
[bookmark: _Toc30328523]Efficiency
Since the WHEN command requires ICD to examine the condition at the beginning of every statement in your program, it can severely degrade execution speed. Keep this in mind as you use the WHEN command. If possible have your WHEN condition attached to a BREAK command so that the condition is only evaluated at specific statements.
[bookmark: _Toc30328524]Specifying the condition to be evaluated
You write the condition the way you would write it as part of a COBOL IF statement. There are some restrictions, however, since ICD is limited in the complexity it is designed to handle. Most of the restrictions eliminate shortcuts that the COBOL compiler allows you to use. ICD requires that you state things more fully.
[bookmark: _Toc30328525]Restrictions on the WHEN condition
The following types of conditions are not legal in a WHEN statement: sign conditions, class conditions, condition-name conditions, and event-identifier conditions. Additionally, all relational operators are entered as either a mathematical symbol or an equivalent three character mnemonic. The following are the legal mathematical symbols and their corresponding three character abbreviations:
	 >, GTR; >=, GEQ; <, LSS; <=, LEQ; <>, NEQ; =, EQL; AND ; OR; NOT.
From the preceding list it is clear that ICD will not accept a relation of the form:
				IS GREATER THAN
You must enter it as either > or GTR.
Furthermore, in contrast to COBOL, ICD does not allow any abbreviated relation conditions. All conditions must be completely specified. Therefore the following condition, that is legal in COBOL,
				A > B OR C
must be entered as follows in an ICD WHEN condition
				A > B OR A > C
[bookmark: _Toc30328526]Including commands with your WHEN statement
You can specify ICD commands that are to be automatically processed when you enter a breakpoint as a result of a WHEN condition becoming TRUE. These commands are placed in parenthesis following the WHEN condition. Multiple commands are separated by semicolons (;).
Note that only commands that do not require a response from you can be automatically executed as part of WHEN
[bookmark: _Toc30328527]Continuing WHEN input lines
If you need to enter either a complicated WHEN condition or several commands that are to be automatically executed, you may want to break your command into several lines. ICD allows the WHEN command to be continued on the next line if you enter a per cent sign (%) on your input line. When ICD sees the "%", the rest of the input line is ignored, and ICD prompts you for another line of input. Input continuation stops when you enter a line that does not contain a "%".
[bookmark: _Toc30328528]Including options:
LABEL - This option allows you to enter a COBOL variable name as an identifier for your WHEN statement. You will need the label when you want to cancel a particular WHEN condition. If you do not enter a LABEL, ICD will generate a label for each WHEN that you enter.
You can display the labels by interrogating the WHEN settings. Just enter WHEN.
SILENT - Suppose that you have entered a WHEN statement and you have included some commands with it. Suppose further that you don't want any of the command output to be printed at your terminal. In that case just add the option :SILENT at the end of your WHEN. Your WHEN commands will be echoed just once, so you can check them, and thereafter will be done silently. You can use the option on either a global WHEN or a WHEN attached to a breakpoint.

Example 1 : Set up a simple WHEN condition to monitor the value of one variable. You want you program to stop whenever "A" becomes equal to 5. You know that "A" is changed at line 14900 in your program. Since you want to stop as soon as "A" changes, you test the condition at the next statement AFTER line 14900.
	ICD> BREAK 15000 WHEN A = 5 : LABEL WATCH-A
	WHEN condition established
Example 2 : You want your program to stop whenever the variable SSN becomes equal to 123456789. In this case, you are not sure where SSN is being modified in your program, so you instruct ICD to check SSN at the beginning of every statement in your program.
	ICD> WHEN SSN = 123456789
	WHEN condition established
Example 3 : Set up a WHEN condition with a more complicated condition to monitor
	ICD > WHEN (TITLE = "MGR" AND SALARY <= 35000) OR SALARY < 20000

Example 4 : Enter a long WHEN condition using line continuation.
	ICD > WHEN AUTHOR = "LE CARRE" AND % This stuff is ignored
	Input Continuation
	ICD> TITLE "THE SPY WHO CAME IN FROM THE COLD" % This too
	Input Continuation
	ICD> (DISPLAY PUBLICATION-DATE; CONTINUE)
	WHEN condition established
[bookmark: _Toc30328529]WHERE
[bookmark: _Toc30328530]Description
WHERE prints the sequence number of the source line where you are currently stopped.
If the line you are on is being performed, then ICD will display a few lines around the one where you are currently paused and also some lines in the neighborhood of the PERFORM verb.
If the compiler moved your PERFORM code in-line (because it was small and only performed once for example), then WHERE will not be able to indicate that you are in a perform.
[bookmark: _Toc30328531]Syntax
	WHERE
[bookmark: _Toc30328532]Examples:

Example 1 : Here your source file is unavailable
	ICD> WHERE
	Currently at line 54600 in Mainline

Example 2 : Your source file is available so ICD shows it along with the fact that you are in a perform.
	ICD> WHERE
	Currently at line 2400 in Mainline
	=> 002400 PERFORM PARA-2 THRU PARA-2-EXIT.

	Outermost PERFORM level
	001900 PARA-1.
	002000 DISPLAY "STARTING".
	002100 MOVE 0 TO A, B, C, D.
	=>002105 PERFORM PARA-1A THRU PARA-1A-EXIT.

	Which called
	002105 PERFORM PARA-1A THRU PARA-1A-EXIT.
	002110 STOP RUN.
	002200 PARA-1A.
	002300 COMPUTE A = A + 1.
	=>002400 PERFORM PARA-2 THRU PARA-2-EXIT.

[bookmark: _Toc30328533]WINDOW
[bookmark: _Toc30328534]Description:
The WINDOW command allows you to divide your terminal screen into three "windows". The top window is where you type commands and receive responses. It is called the MESSAGE window. The window below the message window, the SOURCE window, is used for displaying lines from your source file. The bottom window, the WATCH window, is used for monitoring variables and expressions during execution.
[bookmark: _Toc30328535]Syntax:
WINDOW --|
 | | | | |
 |--- + ---| |---------- ALL ----------| |
 | | | | |
 |--- - ---| |----- <window name> -----| |
 | |
 |--<window name>--<first line>--------------------- <last line> ---|
 | |
 |--- <hyphen> ---|
< window name >
---|
 | |
 |-------------- MESSAGE ---------------|
 | |
 |-------------- MSG -------------------|
 | |
 |-------------- SOURCE ----------------|
 | |
 |-------------- WATCH------------------|

<first line>
-------------------------------------- <number> -----------------------------|
<last line>
-------------------------------------- <number> -----------------------------|

NOTE: Use the OPTION command to indicate that you have a terminal that ICD can handle as a screen - either TD, MT, HP or ANSII (VT100). You can set one of these options before you use the WINDOW command, i.e.
	OPT + TD
If you use a WINDOW command and have not previously set a terminal type, ICD sets OPTION TD for you. If your terminal is different you can re-set the terminal type with the OPTION command.
[bookmark: _Toc30328536]Discussion:
For you to effectively use the windowing facility you should declare a large MAXRECSIZE for the remote file that ICD is using for its dialogue - typically 1920 characters (24 lines times 80 characters). This is done for you automatically when you use the $SET ICD card in your compile and ICD creates the file ICDREMTF.
[bookmark: _Toc836608][bookmark: _Toc30328537]Hiliting breakpoints on the screen
If you have set WINDOWS (WIN +) on your TD terminal your breakpoints will show up highlighted on the screen. Each time you set or clear a breakpoint the window display will be updated to reflect any changes. The following display show break points at line 5000 and 5800.
ICD>

File title = (BILL)DEBUGGER/MODIS_SAMPLE/XGEN_ICD_TEST ON SYMBOL.
 004600 MOVE "EMPINFO." TO WS-EMPINFO-TITLE.
 004700 END : SET-TITLES.
 004800
 004900 PROCEDURE : HANDLE-ERR INVOKE ON IOEXCEPTION
 005000 DISPLAY "AN IOEXCEPTION HAS OCCURRED. ABORT PROGRAM?"
 005100 ACCEPT WS-RESPONSE.
 005200 IF WS-RESPONSE = "Y"
 005300 ABORT
 005400 ENDIF
 005500 END : HANDLE-ERR
 005600
 005700 PROCESS : MAIN.
=>005800 READLOOP EMPINFO.
 005900 BREAKTEST COMPUTE-SAL.
 006000 ENDLOOP
 006100 FMT-DISPLAY("SALARY RPT COMPLETED").

WINDOW
displays the current window settings showing which windows are defined and their locations.
WINDOW +
turns on windowing and gives you default values for the MESSAGE, SOURCE and WATCH windows.
WINDOW - < window name >
allows you to turn off all windowing if you use ALL for < window name >. Otherwise you can close a particular window.
WINDOW <window name> <starting line> - <ending line>
defines the size of a particular window. The lines on the screen are numbered from 1 (top line) to 24 (bottom line).
NOTE: You must define the positions of the three windows in the order message, source and watch from top to bottom
WINDOW REFRESH
ICD will normally refresh the screen whenever it is necessary. You can use this command to refresh the screen whenever you need it.
Example:
The following is a general view of your display window showing the relative position of the three windows. You may have empty areas around the windows if you like.

Top of MESSAGE Window

 Bottom of MESSAGE Window

Top of SOURCE Window

 Bottom of SOURCE Window

 Top of WATCH Window

 Bottom of WATCH Window

Example of your terminal screen after using the WINDOW + command to enable windowing and then entering the WINDOW command to see the size of the defaults:

ICD> WINDOW
MESSAGE window begins at line 1 and ends at 4
SOURCE window begins at line 5 and ends at 19
WATCH window begins at line 22 and ends at line 24
File title = (BILL)DEBUGGER/COBOL74/TESTCOPYLIBS ON SYMBOL.

	006400	001-OPEN.
	006500	001-START.
	006501		OPEN INPUT CARD-FILE.
	006505	*	COMPUTE X = X / 0.
	006600		MOVE "AREA 3 " TO AREA3 OF WORKAREA.
	006700		COPY "DEBUGGER/COBOL74/TESTCOPYLIBS/COPYLIB1".
	006800	DUMMY-PARA-3.
=>	006900		MOVE SPACES TO WORKAREA2.
	007000		COPY "DEBUGGER/COBOL74/TESTCOPYLIBS/COPYLIB2".
	007100		MOVE SPACES TO WORKAREA2.
	007200	*	COPY "DEBUGGER/COBOL74/TESTCOPYLIBS/COPYLIB1"
	007300	*		REPLACING "DUMMY-PARA-1" BY "DUMMY-PAR-1".
	007305	DUMMY-PARA-4.
	007400		MOVE SPACES TO WORKAREA2.

Example 1 : Turn on windowing, then close the watch window, and expand the source window to use the watch window's space.
	ICD > WINDOW +
	ICD > WINDOW - WATCH
	ICD > WINDOW SOURCE 5 - 24
	ICD > WINDOW
	MESSAGE window begins at line 1 and ends at 4
	SOURCE window begins at line 5 and ends at 24
Example 2 : Turn on the ANSII option, which automatically turns on WINDOWing. Then shut down all windowing.
	ICD > OPT ANSII
	ICD > WINDOW - ALL

[bookmark: _Toc30328538]COMPILING with ICD
[bookmark: _Toc30328539]Compiler Control Options
[bookmark: _Toc30328540]$ICD
Syntax:
$ ----------------------- ICD ---|
 | | | |
 |--- SET ---| |------ (< remote file FD >) ------|
 | |
 |-- RESET --|

The ICD compiler option causes the COBOL compiler to create the debugging environment that you use at run-time. The option must be set during compiling for debugging to take place and for the other compile options, such as ICDACTIVE and ICDPRODUCTION, to take effect.
The ICD option must appear before the Identification Division. Also ICD needs a remote file to use for its dialog with you. For example:.
If your program already has a remote input file declared : ICD must use this file so include its name in parenthesis with the ICD option.
$ SET ICD (REMOTE-FILE)
If your program does not have a remote input file declared: ICD will create one called ICDREMTF when you use the ICD card without a file name. For example:
$ SET ICD
Examples of ICD compiler control option use:
Example 1: Your program does not have a REMOTE input file. ICD creates one.
	000100 $ SET ICD
			. . .
	002000 PROCEDURE DIVISION.
			. . .
	002340 STOP RUN.

Example 2: Your program has a REMOTE input file. ICD must use the same one, so the remote file name is included with the ICD compiler option..
	000100 $ SET ICD (REMOTE-FILE)
			. . .
	001510 SELECT REMOTE-FILE ASSIGN REMOTE.
			. . .
	002000 PROCEDURE DIVISION.
			. . .
	002600 OPEN INPUT REMOTE-FILE.

[bookmark: _Toc30328541]$ ICDACTIVE
Syntax:
$ ----------------------- ICDACTIVE ---|
 | |
 |--- SET ---|
 | |
 |-- RESET --|
Simply setting ICD will allow debugging throughout your entire program. You can specify a breakpoint at any valid statement in the PROCEDURE DIVISION. As you might expect, there is some overhead associated with debugging and you may want to eliminate as much of it as possible. In particular, you may find it unnecessary to debug parts of your program that are already thoroughly tested - standard modules that are included from a program library for example.
Debugging code is emitted by the compiler based on the setting of the option ICDACTIVE. This option is set automatically when ICD is set.
As each of your source statements is processed, the compiler emits some extra "debugging code". To instruct the compiler to temporarily stop emitting this debugging code, include the following in your source program:
		$ RESET ICDACTIVE
From this point forward, the compiler will stop emitting any debugging code. To enable debugging code again, just insert:
		$SET ICDACTIVE
You may not set a breakpoint at run-time in those areas of your program where debugging was disabled (RESET) during compilation. Also, statements in those areas are not counted when doing a CONTINUE + <number> command.
Of course, you can still examine and set all variables - even those variables whose values are changed by parts of your program where debugging is disabled.

Example :
In this example you may not set any breakpoints at statements between 1800 and 2510. If you try to do so at run-time, ICD will warn you that you can not set breakpoints there.
	000100 $ SET ICD
		. . .
	001000 PROCEDURE DIVISION.
	001100* DEBUGGING IS ENABLED HERE
		. . .
	001800$ RESET ICDACTIVE
	002001* DEBUGGING IS NOT ENABLED HERE
		. . .
	002510$ SET ICDACTIVE
	003010* DEBUGGING IS ENABLED AGAIN
		. . .
	005000 STOP RUN.

[bookmark: _Toc30328542]$ ICDPRODUCTION
Syntax:
$ ----------------------- ICDPRODUCTION -------------------------------------|
 | |
 |--- SET ---|
The ICDPRODUCTION compiler option indicates that the code file is being generated for production, but that you still want the debugging environment created so that you have the option of debugging at a later date (without recompilation) should a problem arise.
This option can only be set and it must appear before the first statement in your Procedure Division.
A code file that has been compiled with the option ICDPRODUCTION uses the option TADS at run-time to determine whether or not you want to debug. When the runtime option TADS is not set your program is in production and no debugging takes place. However, if you run your program with the option TADS set, i.e.
		RUN <program name> ; TADS
then your program begins by displaying the normal ICD greeting and allowing debugging to start.
See the discussion of the BP command for another use of the TADS option at run-time.
[bookmark: _Toc30328543]Bound Programs
On-line programs are often constructed by "binding" together routines written separately where each routine handles a particular transaction. Often the main or host module is written in ALGOL. Then each COBOL, transaction handling, routine is bound to this host. ICD can handle the debugging of these kinds of programs. ICD allows debugging of bound COBOL programs, COBOL routines bound to an ALGOL host, and bound libraries with either a COBOL or ALGOL host.
While debugging you can see local variables declared in your COBOL routine and global variables declared in the host that are syntactically visible to the bound routine. Please request the separate document on debugging bound code with ICD, "Using ICD to Debug Bound Code", for complete details.
[bookmark: _Toc30328544]EXECUTION DETAILS
Please note that there is a more detailed discussion of file equating remote files in the section titled "COMS onlines, Batch (WFL jobs), and programs with remote files".
[bookmark: _Toc30328545]Debugging a Batch Program and dealing with ICD's remote file
You will need a remote file so you can interact with ICD. The ICD compiler will create one for you with an internal name (INTNAME) of ICDREMTF. Compile your program including the following compiler option:		$SET ICD
Setting the task attribute SOURCESTATION, will cause ICD dialog to be directed back to the terminal that initiated the job. Your WFL deck will be as follows:

?BEGIN JOB ICDBATCHJOB;
. . .
RUN COBOLPROG/COMPILER/WITH/ICD;
STATION = MYJOB (SOURCESTATION);

When your batch program begins execution, ICD gets control and attempts to print a greeting at your station. Depending on the setting of CANDE's run-time option, LAISSEZFILE, CANDE might intervene and ask you to OK or DENY the request. If so, simply enter OK at your station. ICD's greeting will print at the terminal. From this point on, debugging commands and control of execution takes place from this terminal.
Of course, you can direct your output to another station by either setting STATION to a different value or file equating ICDREMTF.
[bookmark: _Toc30328546]Debugging a program that uses forms mode screens
If your program sets terminal attributes or uses extensive screen formatting, you might want your debugging dialog to take place on a different terminal. You can debug using two terminals by following the procedure outlined below.
NOTE: You can achieve the effect of having two terminals by using two CANDE windows under COMS ("Unisys e-@ction Transaction Server"). If you only need to postpone the opening of your remote file until your program sets some file attributes, you may find that running your program with the TADS task attribute set is more suitable. The advantage of this method is that you can start your program and postpone the ICD greeting until you enter ?BP. (See "How to use the TADS option" below for details.) Another, but less flexible, alternative is to use the ICDACTIVE option at compile-time to eliminate debugging until your file is opened.
Compile your program, including $SET ICD as the compiler control option. The compiler will generate a remote file for ICD with an INTNAME (internal name) of ICDREMTF (ICD remote file). At run-time you must file equate both ICDREMTF and the file SCREENFILE, where your formatted screen output is written.
Suppose that your program skeleton is :
	000100 $ SET ICD
			. . .
	001510 SELECT SCREENFILE ASSIGN REMOTE.
	. . .
	002000 PROCEDURE DIVISION.
		. . .
	002600 OPEN I-O SCREENFILE.
		. . .
	002800 STOP RUN
First compile your program with ICDCOBOL and then run it. You must file equate both remote files. The run command is entered as follows from CANDE (where % is the CANDE continuation character):
	RUN MYPROGRAM; STATION = 0; %
	FILE SCREENFILE (TITLE =S103AA); %
	FILE ICDREMTF (TITLE = S111BC);
Note: STATION must be set to zero for CANDE to recognize the file equates of the remote files.
When your program starts, ICD will gain control and try to print a greeting at station S111BC. Depending on the setting of CANDE's run-time option, LAISSEZFILE, CANDE might ask you to OK or DENY this request. If so, enter OK at station S111BC and begin your debugging dialog. When program execution reaches the point where file SCREENFILE is opened, you might also have to OK the request to open file SCREENFILE at station S103AA.
[bookmark: _Toc30328547]WFL MODIFY
A more flexible method of achieving the file equate is to use CANDE's WFL MODIFY statement, which allows you to change file and task attributes in a code file that you have already compiled, i.e.:
WFL MODIFY <on-line code file name> ; %

FILE ICDREMTF (TITLE = S30ZA/CANDE/2)
[bookmark: _Toc30328548]ICD/STARTUP file
If you would like some ICD commands to be executed automatically when your program starts, place them in a file called ICD/STARTUP. ICD looks for this file when it starts and does any commands contained there.
OPTION TD
WINDOW +
[bookmark: _Toc30328549]How to start your program execution without displaying ICD's greeting message
If you would like your program to execute for a while before ICD prints its greeting
 message, just include the TADS option when you start your program. See the ?HI and
 the ?BP commands for complete details. (NOTE: If your program was compiled with ICDPRODUCTION then you cannot delay ICD's greeting this way.)

RUN < program name>; TADS
[bookmark: _Toc30328550]Use LFILES to Identify code files compiled with ICD
The ICD compiler marks your code file when you use either the ICDPRODUCTION or ICD option. The code file attribute RELEASEID is set to something descriptive. Use LFILES :RELEASEID to check your code files.
Example : Suppose you are using W?LDC*RDS, our modified version of LFILES, and you want to see the RELEASEID of all your COBOL74 codefiles created in the last week: Just enter:
	LFILES : FILEKIND = COBOL74 AND CREATIONDATE >= TODAY -7 RELEASEID
(BILL) ON SYMBOL
 . OBJECT : DIRECTORY
 . . DEBUGGER : DIRECTORY
 . . . COBOL74SOURCE :COBOL74CODE CREATIONDATE = 11/15/2002 @ 12:45:55
 RELEASEID = ICD Version 20.1; COMPILER 47.075.043, ICD

[bookmark: _Toc30328551]EFFICIENCY CONSIDERATIONS
[bookmark: _Toc30328552]Introduction
The extra code emitted in conjunction with debugging naturally adds something to the execution time of your program. Its impact depends on what kind of program you are debugging. If your program is small or you only have to execute a few thousand source statements to reach the problem area, then the impact of any ICD overhead will probably be minimal. On the other hand, if you have to process thousands of transactions before reaching the problem area, then you will be more concerned with debugging overhead.
What you need is some estimate of the "cost" of using ICD. The timings given below, although approximate, will give you the information you need to make some estimate of debugging overhead.

[bookmark: _Toc30328553]General Guidelines
[bookmark: _Toc30328554]Breakpoints
In general, keep the number of active breakpoints to a minimum. If you have passed a line of your COBOL source that will not be executed again (for example, code in an initialization section), do not leave the line number in the list of breakpoints; use "BREAK - " to delete it. Similarly, do not set all your breakpoints at once. The longer the list of active breakpoints, the more time must be spent searching that list at the beginning of every statement. For example, doubling the number of breakpoints will approximately double the time spent in debugging code. Note that ICD overhead will double, not the execution time of your program.
[bookmark: _Toc30328555]CONTINUE command
The CONTINUE + <number> version of this command generates a call on ICD for each statement of your source program. For this reason, do not use this version of the command to execute more than a few hundred statements at a time. If you want to execute several thousand statements, setting a breakpoint where you want to stop is more efficient.
[bookmark: _Toc30328556]Efficiency of the WHEN command
Since the WHEN command requires ICD to examine the condition at the beginning of every statement in your program, it can severely degrade execution speed. Keep this in mind as you use the WHEN command. If possible use the BREAK command with a WHEN clause modifier so that the condition is only evaluated at specific statements.
[bookmark: _Toc30328557]Processor Timings while using ICD
The following timings were obtained on a Unisys A5. Although timings on your machine will probably differ, the comparisons cited here will remain valid.
PROGRAM 1: This program searches a table for a value and then does a computation based on the value in the table. The search and computation were performed 10,000 times and a difference obtained between running with and without ICD.

	
	No Debugging
($ RESET ICD)
	Debugging
($ SET ICD)

	Difference

	Process time for
10,000 performs
	18 sec
	21 sec
	3 sec (16%)

PROGRAM 2: This program is an extreme case where the COBOL source is actually less significant than the debugging code itself. In this program, a paragraph containing 3 simple MOVE statements was performed 30,000 times. The timings for this "worst case" example are:

	
	No Debugging
($ RESET ICD)
	Debugging
($ SET ICD)
8 Breaks Active
	Debugging
($ SET ICD)
100 Breaks Active

	Process time for
30,000 performs
	.9 sec
	5 sec
	30 sec

In the Debugging cases, entering valid sequence expanded the breakpoint list numbers, but ones that were not contained in the loop being measured. Note how process time increases as the size of the breakpoint list increases.
Naturally your programs contain code with varying degrees of complexity. The point to remember is that the longer the program runs the more important it is for you to keep debugging efficiency at its highest.
To get a uniform measure of ICD overhead, we measured the amount of process time that ICD adds to a program statement. This is fairly straightforward to determine by taking the time differences for runs with and without ICD and dividing by the number of COBOL statements executed. The results show that when 8 Breakpoints are enabled:
	1 line COBOL source = .044 millisec for debugging code to be executed.
	1,000 lines COBOL source = 44 millisec for debugging.
	22,700 COBOL statements = 1 second of extra process time for debugging.

That is, if 8 breakpoints are set, then every 22,000 statements adds approximately 1 second to your execution time.

 If the breakpoint list is 100 long, overhead increases. In this case for every 3,400 statements you execute, debugging code takes approximately 1 second.
[bookmark: _Toc30328558]General Notes
[bookmark: _Toc30328559]SEGMENT SIZE compiler error
While the code emitted to enable debugging is minimal, it will cause your code file to increase slightly in size. A program that previously compiled without error might, when compiled with ICD, produce the following cryptic message:
	SEGMENT SIZE > 8192 WORDS
The explanation involves how the compiler groups your program code into units called segments. These segments have a maximum size of 8192 words. Each time the compiler encounters a paragraph name it checks to see if the size of the segment being created is nearing the maximum allowed size. If it is, the compiler automatically begins a new segment. The compiler only checks the segment size when it encounters a paragraph name.
Using ICD on a program with one or more large segments may cause you to exceed the maximum segment size before the compiler encounters a paragraph name and has a chance to automatically segment your program. To remedy this situation insert a paragraph name prior to the point where the compiler error occurred.
[bookmark: _Toc30328560]Using ICDACTIVE
The first time it is called from your program, ICD opens its dialog file, prints a greeting message and waits for your commands. Normally this is done just before the first statement in your PROCEDURE DIVISION is executed. But if you use the ICDACTIVE compiler option, you may have disabled debugging until some later point in your program. In that case, ICD will do its initialization the first time that you reach any statement that had debugging enabled.
If ICD is using one of your declared files for dialog, and your program has already opened it, ICD will get an attribute error as it attempts to open the file. Just ignore the error.
[bookmark: _Toc30328561]FAULT HANDLING
ICD is designed to allow you to recover from some fatal program errors. In particular, you will enter ICD if your program gets a "hard fault" such as INVALID INDEX or DIVIDE BY ZERO. ICD prints a message telling you the fault that occurred and the line number where it occurred.
After a fault, ICD will allow you to DISPLAY and SET values of variables, LIST your source program, and FIND variables that you declared in your program. You can not CONTINUE your program's execution after a fatal error. When you are finished your debugging session enter QUIT.
Note that errors such as EOF NO LABEL, SECURITY VIOLATION, and DMSII errors, which cause "soft faults", are not caught by ICD.
[bookmark: _Toc30328562]Debugging COBOL74 LIBRARIES with ICD
Please note that there is a more detailed discussion of file equating remote files in the section titled "COMS onlines, Batch (WFL jobs), and programs with remote files".
[bookmark: _Toc30328563]Introduction:
This section will tell you how to use ICD to debug COBOL LIBRARIES. Two programs are involved - a LIBRARY and the program that calls it. We will concentrate our discussion on the LIBRARY. The calling program only concerns us when it contains a remote file that might have to be file equated.
The options available for handling the calling program were previously discussed in the section on EXECUTION DETAILS. You can compile-in your file equates, file equate at run-time, use WFL MODIFY on the code file or rely on CANDE's automatic file equation of remote files. Similar options are available when debugging LIBRARIES and will be discussed in turn. Suppose that you have the following skeleton of a program that calls a COBOL LIBRARY:
CALLING PROGRAM - PROGRAM 1
	. . .
001000 PROCEDURE DIVISION.
	. . .
001100 CALL "PROCEDUREDIVISION OF OBJECT/PROGRAM2"

001200 USING EBC-01, VAR1-77.
	. . .
060200 STOP RUN.
The LIBRARY program has a skeleton of the form:
LIBRARY PROGRAM - PROGRAM 2

000100$SET ICD
000200$SET TEMPORARY
	. . .
001000 PROCEDURE DIVISION USING LIB-IN-01, LIB-IN-77.
	. . .
052000 EXIT PROGRAM.
	. . .
060200 STOP RUN.
Normally, your library will not contain a remote file - however it will have a remote file added after you compile it with ICD. In the following sections we will explain how to deal with various situations regarding remote files under both CANDE and WFL.
[bookmark: _Toc30328564]Neither the caller nor the LIBRARY has a remote input file
You will be dealing with one remote file. After you compile your LIBRARY with $ICD set, you will have a remote input file (ICDREMTF) in the library. (See the section on COMPILING DETAILS for a complete discussion of the ICD card). Since you are using ICD, your LIBRARY must be compiled with ICDCOBOL. For example from CANDE enter:
COMPILE PROGRAM2 WITH ICDCOBOL
The calling program does not have to be re-compiled to debug your LIBRARY. Since it does not use ICD, it makes no difference whether it is compiled with COBOL or ICDCOBOL.
[bookmark: _Toc30328565]CANDE
You can rely on CANDE to automatically file equate your remote file to your terminal. Just run your program i.e. RUN PROGRAM1. At run-time, CANDE routes all remote file dialog from the LIBRARY to your station - so you do not have to worry about file equation. ICD dialog will begin the first time the LIBRARY is called. Before any PROCEDURE DIVISION statements in your LIBRARY are executed, ICD prints its greeting and is ready for your commands.
[bookmark: _Toc30328566]WFL
WFL does not provide automatic file equation of remote files. If you start your WFL job from CANDE, you can direct all remote files back to the originating station by setting the STATION attribute to MYJOB (SOURCESTATION). To run the same program from WFL just use the following:

?BEGIN JOB DEBUGALIBRARY;
	. . .
RUN OBJECT/PROGRAM1;
STATION = MYJOB (SOURCESTATION);

[bookmark: _Toc30328567]Calling program has a remote input file-the library does not
We are dealing here with two remote input files. The calling program may already contain a remote file or you may be debugging it too, in that case ICD has generated a file, ICDREMTF, for debugging.
After you compile the library with ICD, you will have two remote input files, the caller's and the file (ICDREMTF) that ICD automatically declared for its dialog in the library.You cannot rely on CANDE's automatic file equation when you have two remote input files, because CANDE will try to have both of them use your station for input, which is illegal. Each file must be separately file equated. The file equation in the calling program is straightforward and is handled in the normal manner - either compile it in, equate it at run-time or use WFL modify. The library's remote file presents some difficulties.
The implementation of libraries does not allow run-time file equation of library files. There are three ways to handle the remote file in the library :compile-in a file equate, use WFL MODIFY on the code file or use a special ICD run-time equate method.
[bookmark: _Toc30328568]Compiled-in file equates
Compile the library with ICD and include a file equation card, setting ICDREMTF to the proper station title. For example :

COMPILE OBJECT/PROGRAM2 WITH ICDCOBOL LIBRARY;
FILE ICDREMTF (TITLE = S15432)

Compile the caller in a similar manner. For example

COMPILE OBJECT/PROGRAM1 WITH ICDCOBOL LIBRARY;
FILE <program1 remote file name> (TITLE = S102345)

[bookmark: _Toc30328569]Running the program

[bookmark: _Toc30328570]From CANDE
To run and debug the library with the compiled-in file equates, you must tell CANDE to suppress its automatic file equation of remote files. You do this by setting the attribute STATION to zero. For example :
RUN PROGRAM1; STATION = 0
Remote file dialog will take place at the stations you used when you file equated at compile-time.
[bookmark: _Toc30328571]
From WFL
You run your program in the normal manner. For example:
?BEGIN JOB DEBUGACALLERANDLIB;
RUN OBJECT/PROGRAM1;
[bookmark: _Toc30328572]WFL MODIFY
You can change the file equates (and task attributes) in a code file by using the WFL MODIFY command from CANDE. For example :

WFL MODIFY OBJECT/SYMBOL/MYCODEFILE; %

FILE ICDREMTF (TITLE = S405)
[bookmark: _Toc30328573]Special ICD file equation for Libraries
To make it easier for you to debug libraries, ICD provides a method that, in effect, allows run-time file equation of a LIBRARY's ICD dialog file. A file, ICDLIBINPUT, has been especially provided by ICD solely for the purpose of allowing run-time file equation when debugging a LIBRARY. If you are debugging one LIBRARY then you can control its ICD dialog by equating to this file. When you run your program, you include a file equate for ICDLIBINPUT just as if it were in the calling program; ICD in the library you are debugging will pick up the file equate. If the calling program requires any file equates, they are treated exactly as described before in the EXECUTION DETAILS section.
[bookmark: _Toc30328574]Special file equation with CANDE
You have two remote input files so that you have to set STATION to zero and include the two file equates.
RUN OBJECT/PROGRAM1; STATION = 0; %

FILE <program 1 remote file> (TITLE = S1203); %

FILE ICDLIBINPUT (TITLE = S1234)

[bookmark: _Toc30328575]Special file equation with WFL
You will equate the same two files as you do under CANDE.

?BEGIN JOB DEBUGJOB;
RUN OBJECT/PROGRAM1;

FILE <program 1 remote file> (TITLE = S1203);

FILE ICDLIBINPUT (TITLE = S1234)
[bookmark: _Toc30328576]Debugging two libraries
When debugging more than one LIBRARY at a time, the special method of equating to ICDLIBINPUT will not work (each LIBRARY would try to use the same file, ICDLIBINPUT). Compile-in your file equates or use WFL MODIFY. Set each LIBRARY's ICDREMTF to a different station.
[bookmark: _Toc30328577]Libraries under COMS ("Unisys e-@ction Transaction Server")
In this environment LIBRARIES are handled in exactly the same manner as the other programs you debug with ICD under COMS - each program has its file equations compiled-in or you use WFL MODIFY from CANDE.Again we take the same two skeleton programs. If you want to debug the calling program, include the $ICD card and the file equate for ICDREMTF. Your WFL deck will be:

COMPILE OBJECT/PROGRAM1 WITH ICDCOBOL LIBRARY;

FILE ICDREMTF (TITLE = S102345);

Similarly the LIBRARY would be compiled as follows:
COMPILE OBJECT/PROGRAM2 WITH ICDCOBOL LIBRARY;
 	
FILE ICDREMTF (TITLE = S15432);

If your program is already compiled with ICD and you just want to change the file equation use WFL MODIFY.
When your LIBRARY starts, ICD will try to open the file ICDLIBINPUT (it is there for those who work in the CANDE environment). You will see the message:

FILE ICDLIBINPUT UNKNOWN FILE/STATION
Ignore the message. It will not effect your execution. Your compiled-in file equations will insure that ICD dialog is directed to the proper terminals.

ICD Version 20	Page 2	January 2003
[bookmark: _Toc30328578][bookmark: _Toc516475960]COMS onlines, Batch (WFL jobs), and programs with remote files
[bookmark: _Toc516475961][bookmark: _Toc30328579]Introduction
Debugging a batch or COMS ("Unisys e-@ction Transaction Server") online program requires that you are able to communicate through a known remote file so that you can enter debug commands and receive debug output. Batch and COMS online programs typically do not contain remote files but you need one for ICD dialog with you.
You do not have to declare any remote file in your program -- ICD declares one for you when you use the $ SET ICD option. The remote file that ICD declares is called ICDREMTF (for ICD REMote File). It's as if you put a SELECT statement in your program that said "SELECT ICDREMTF ASSIGN TO REMOTE" and then an "OPEN I-O ICDREMTF" at the start of the Procedure Division. The ICD compiler does all the work for you. You just have to tell COMS how to direct input/output for that remote file.
The following discussion explains how to do the file equation so that you can use ICD in batch and COMS online programs. These situations typically require file equation of at least the ICD dialog file, ICDREMTF. You might also need to file equate if your program already has a remote file.
[bookmark: _Toc516475962][bookmark: _Toc30328580]The steps you need to take	
1. Identify the name of the remote file in your program
2. Identify the station for ICD output
3. Construct the file equates
4. Run your program
[bookmark: _Toc516475963][bookmark: _Toc30328581]1. Identify the name of the remote file in your program
[bookmark: _Toc516475964]Introduction
You must have a remote file for ICD debug commands and output. You do not need to declare an extra file for this. ICD does this automatically for you. The discussion that follows helps you pinpoint the file you will need to equate at runtime. We will examine two cases -- programs with and without remote files.
[bookmark: _Toc516475965]Case #1. COMS online and Batch programs. No remote file in your program
Typically online and batch programs do not contain a remote file. You need to do nothing more than compile with $ SET ICD. As we mentioned earlier the ICD compiler generates a file for ICD to use just as if you had a"SELECT ICDREMTF ASSIGN REMOTE" statement in your program.
ICDREMTF is the file you need to equate.
If this is your case go to the next section "2. Identify the station for ICD output".
[bookmark: _Toc516475966]Case #2.. Your program has a remote file
[bookmark: _Toc516475967]Introduction
Batch (WFL) programs and COMS online programs typically do not have remote files. You might have a remote file if you are testing an online program in a CANDE window. Some sites accomplish this by embedding the online transaction code to be tested inside a skeleton that sends I/O back to your terminal. This lets you test your code before incorporating it in with the full online program.
[bookmark: _Toc516475968]Identifying the remote file already present
Go to the FILE CONTROL section of your program and locate the SELECT statement that identifies your remote file. For example suppose you find this statement:
SELECT Z-REMOTE ASSIGN TO REMOTE
In this case "Z-REMOTE" is the file you need to equate.
[bookmark: _Toc516475969]Decide whether to share the remote file with ICD
Normally it is easier to have program I/O and debug I/O directed to separate CANDE windows. If your output screen is in forms mode then it is imperative to use two windows. The drawback is that at runtime you have to switch between these windows and keep track of which window is waiting for input. When your program starts you will get the ICD greeting in the ICD window (ICDREMTF), then set some breakpoints and then enter the CONTINUE command. Typically you would then switch to the program's remote window to enter any program input.
If your remote file is not in forms mode you can share it with ICD debug commands. The advantage is that at runtime you don't have to switch windows. The disadvantage is that you do not get a nice separation of program and ICD I/O on the screen.
With either choice, sharing ICD with your remote file or using two remote files, you have to do file equation. The question is just whether it is for one file or two.
[bookmark: _Toc516475970]Using separate remote files for your program and ICD
You might decide you want to separate ICD dialog from any output that your program sends to its already-present remote file. Identifying the remote file that the ICD compiler created for you is easy. As we discussed earlier, because you compiled with the ICD compiler and the $ SET ICD option, the compiler has created a remote file for ICD to use. This file is called ICDREMTF (for ICD Remote File).
The files you need to equate are the remote file that you already have (in this example Z-REMOTE) and ICDREMTF, the ICD-generated remote file.
[bookmark: _Toc516475971]Sharing a remote file with ICD
If you want to use the same file for program and debug I/O you need to tell the ICD compiler not to generate the customary ICDREMTF. Instead the ICD compiler should generate code that uses the remote file that your program already has. To tell the compiler to do this simply add one dollar card immediately in front of the already present $ SET ICD card. Then compile with the ICD compiler as you normally do. The card you will add is:
$ SET ICD (<remote file name>)
In the example we have been using, where the program already contains a remote file called Z-REMOTE, the card would look like:
$ SET ICD (Z-REMOTE)
Your program skeleton would look like:
	000100 $ SET ICD (Z-REMOTE)
			. . .
	001510 SELECT Z-REMOTE ASSIGN REMOTE.
	. . .
	002000 PROCEDURE DIVISION.
		. . .
	002600 OPEN I-O Z-REMOTE.
		. . .
	002800 STOP RUN
[bookmark: _Toc516475972][bookmark: _Toc30328582]2. Identify the station for ICD output
Now that you have determined what remote files need to be equated you have to know which station you will be using for communication and how to address it. The discussion below will help you determine how to address the station.
[bookmark: _Toc516475973]Use ?WRU to find your station name
The file equates will make use of your station name. We will use the ?WRU (WhoAreYou) to get your station name. The station name is the first thing returned in response to a ?WRU and is highlighted in the examples below.
[bookmark: _Toc516475974]?WRU from COMS	
Entering ?WRU from COMS might give you a lengthy output something like this:
?WRU
IP204_24_16_163/GENERIC_MIPCDEVL AT MIPCDEVL(16525) = LAN
Device Type =
NX4800:5499 MIPCDEVL *SYSTEM/COMS ON SYSTEMPACK 46.189.
*SYSTEM/MARC/COMMANDER ON SYSTEMPACK 46.189.
Window = CANDE/
User = SDS; Access = GRAHAMWQ
Session = 40361
Telnet DN = 62 [Active
Client = 204.24.16.163 Port =
Server = 167.240.195.3 Port =
Last logon date & time: Fri, May 25, 2001 at 11:17:
Last logon station: IP10_33_59_158/MYSTA
Figure 1 Typical ?WRU output from a COMS station
If you are running under COMS you will want to direct your input/output to a particular CANDE window. To identify the window we could just add"/CANDE/<integer number>" to the COMS station name we determined above.
But there is an easier way to get the system to return the station name. Just transfer to the CANDE window you want to use and do your ?WRU from there. You need to be aware that ?WRU behaves differently under COMS. Quoting from the COMS manual:
"If any control commands do not yield normal results when entered from a COMS window dialog, the problem can be resolved by using an extra control character (usually a question mark [?]). For example, COMS intercepts a ?WRU command, but entering ??WRU directs the command to CANDE."

Here are the steps you need to take and the system responses :
1. First go to the CANDE window you want to use and make sure you are logged in.
? ON CANDE/1
then log-on if necessary
2. Enter ??WRU to get CANDE to return your station name. You should get a short response like this:
?? WRU
NX4800:5499 CANDE SSR 46.1 (46.189.8008) AT MIPCDEVL.
#YOU ARE IP204_24_16_163/GENERIC_MIPCDEVL/CANDE/1 (238)
#SESSION = 9914 USER = SDS
[bookmark: _Toc516475975]?WRU from CANDE	
At a site that runs only CANDE, ?WRU might give something like this:
?WRU	
#A11:8572 CANDE SSR 46.1 (46.189.8030) AT CALVIN
#YOU ARE PPP-AS42-27_NSS_U/TELNETSTA/00137(147)
#SESSION = 0411 USER = BILL CHARGE = UCSC.
Figure 2 Typical ?WRU response from CANDE
[bookmark: _Toc516475976]Test your station address so you can be sure you can address it
After you have used the ?WRU (or ??WRU) to get your station name it's time to test that you can send a message there.
1. We'll use the SS (Station to Station) command to send a message ("Hello CANDE Window 1") to your station and see if it arrives. Using the example of the COMS station name:
?SS"IP204_24_16_163"/"GENERIC_MIPCDEVL"/CANDE/1 Hello CANDE Window 1
Note: The SS command requires these quotes (") only around levels that contain special characters.
2. You should receive the message. Once you do, you know that you have a valid way to construct the address of this station.
#12:17 FROM SDS ON 16525: Hello CANDE Window 1
3. If you need a second remote file move to another CANDE window and repeat these steps.
[bookmark: _Toc516475977][bookmark: _Toc30328583]3. Constructing the file equates
[bookmark: _Toc516475978]Introduction.
Now it's time to get your file equates in place. Remember in Step 1 you determined the files that needed equation. In Step 2 you got the names of the stations where you will send the output. Now, for each file you will construct a file equate statement of this general form:
FILE <internal name> (TITLE = <station name>)
We'll be using quotes around parts of the station name that contain special characters although this may not strictly be necessary. (They were necessary for the ?SS command discussed earlier)
There are several ways you can apply the file equates: you can compile your file equates into your program; you can include them with your run statements in batch (WFL start jobs) or CANDE (but not with online programs); or you can use the WFL MODIFY statement to incorporate your file equates in a separate step before running your program. Since the WFL MODIFY will work for all cases we recommend that you use this method, but we will briefly touch on the other methods.
[bookmark: _Toc516475979]File equate methods that work for CANDE, batch and online
Both of the following methods work for all types of programs.
[bookmark: _Toc516475980]1. Using WFL Modify
The following excerpt from the WFL manual describes the MODIFY statement.
"The MODIFY statement permanently changes the attributes within an object code file. The MODIFY statement permits task attributes, file equations, library equations, and database equations that are compiled into an object code file to be added to or changed, without recompiling the source file. The attributes listed in the MODIFY statement are permanently stored in the object code file after they have been merged with the previous attributes. If an attribute specified in a MODIFY statement had previously been assigned for that object code file, the new value given in the MODIFY statement is used."
From CANDE you can just enter the WFL MODIFY statement and the file equates. Suppose you just compiled OBJECT/ICD/TEST. WFL MODIFY makes it easy to add file equates. i.e.
WLF MODIFY OBJECT/ICD/TEST ; %
FILE ICDREMTF (TITLE ="IP204_24_16_163"/"GENERIC_MIPCDEVL"/CANDE/3); %
FILE Z-REMOTE (TITLE ="IP204_24_16_163"/"GENERIC_MIPCDEVL"/CANDE/4)
Note : the "%" character is CANDE's line continuation character.
[bookmark: _Toc516475981]When you run the program from WFL or COMS
The file equates are already in place. Just run your program normally.
[bookmark: _Toc516475982]When you run the program from CANDE
Remember to include a STATION=0 statement so CANDE will use the file equates. i.e.
RUN ICD/TEST; STATION =0
[bookmark: _Toc516475983]2. Compiling-in your file equates
This is almost the same as using WFL MODIFY except you combine the file equate with the compilation process. For example here we're setting two remote files to separate CANDE windows under COMS:
COMPILE OBJECT/ICD/TEST WITH 461VSN18ICDCOB74 LIBRARY; %
FILE ICDREMTF (TITLE = "IP204_24_16_163"/"GENERIC_MIPCDEVL"/CANDE/1); %
FILE Z-REMOTE (TITLE = "IP204_24_16_163"/"GENERIC_MIPCDEVL"/CANDE/2)
Note : the "%" character is CANDE's line continuation character.
[bookmark: _Toc516475984]When you run the program from WFL or COMS
The file equates are already in place. Just run your program normally.
[bookmark: _Toc516475985]When you run the program from CANDE
Remember to include a STATION=0 statement so CANDE will use the file equates. i.e.
RUN ICD/TEST; STATION =0
[bookmark: _Toc516475986]CANDE and WFL only techniques
For CANDE and WFL (but not COMS online) you can include the file equates with your job deck at runtime. It's very similar to the WFL MODIFY and compiling-in options.
The statements you use are nearly identical in CANDE and WFL. The only addition is that from CANDE you must include a STATION=0 statement in your job deck. Here are two examples running the same program, requiring two file equates, from CANDE and WFL.
[bookmark: _Toc516475987]Run-time file equates in CANDE

RUN ICD/TEST; %
STATION = 0; %
FILE ICDREMTF (TITLE = "PPP-AS42-27_NSS_U"/TELNETSTA/00137); %
FILE Z-REMOTE (TITLE = "PPP-AS42-27_NSS_U"/TELNETSTA/00165)

[bookmark: _Toc516475988]Run-time file equates in WFL

?BEGIN JOB ICDBATCHJOB;
. . .
RUN OBJECT/ICD/TEST;
FILE ICDREMTF (TITLE = "IP204_24_16_163"/"GENERIC_MIPCDEVL"/CANDE/1);
FILE Z-REMOTE (TITLE = "IP204_24_16_163"/"GENERIC_MIPCDEVL"/CANDE/2);
. . .
?END JOB

[bookmark: _Toc516475989]Special Cases – one remote file in CANDE or WFL
If you are dealing with a CANDE or batch job (and not a COMS online) and you have only one remote file to equate, you can take advantage of the fact that, unless you specify otherwise with file equates, the MCP will automatically send remote file I/O back to the originating station. You do not actually need any file equate in this situation. However, if you want I/O to take place at a different station or you have two remote files the examples below will not work.
[bookmark: _Toc516475990]One remote file under CANDE
All you need to do is simply run your program. The remote file is automatically directed back to your station. (Do not use a STATION=0 statement here)
Example:
RUN ICD/TEST/PROGRAM
[bookmark: _Toc516475991]One remote file in a batch (WFL) job
You can use something effectively like a file equate without having to know your station name. Simply add the WFL STATIONNAME statement. Below is a short excerpt from the WFL manual describing the situation.
”Special measures are required when using WFL to initiate a program that reads from or writes to a remote file.
When a program tries to open a remote file, by default it tries to associate that file with the station the program was initiated from. However, if the program was initiated by a WFL job, then the program is not associated with a station, and an error is generated when it attempts to open the remote file.
To prevent this problem, you can include the following statement near the start of the WFL job, before any tasks are initiated:
MYJOB(STATIONNAME = #MYSELF(SOURCENAME));
This statement causes the STATIONNAME attribute of the WFL job to store the name of the station that initiated the job. Any tasks of that job inherit the STATIONNAME value. When any of these tasks opens a remote file, the remote file is linked by default to the station that initiated the WFL job."

Setting STATIONNAME will cause ICD dialog to be directed back to the station that initiated the job. Your WFL deck will be as follows:

?BEGIN JOB ICDBATCHJOB;
. . .
RUN COBOLPROG/COMPILED/WITH/ICD;
MYJOB(STATIONNAME = #MYSELF(SOURCENAME));
. . .
?END JOB

[bookmark: _Toc516475992]Summary of file equate options:
The following two tables summarize your options when dealing with remote files and show some example file equates.

	If your program has:
	File names to equate
	Example file equates
(you may not need the quotes but it won't hurt to have them)

	
	
	CANDE
	COMS

	No remote file
	· ICDREMTF
	· FILE ICDREMTF (TITLE = "PPP-AS42-27_NSS_U"/TELNETSTA/00137)
	· FILE ICDREMTF(TITLE= "IP204_24_16_
163"/"GENERIC_MIPCDEVL"/CANDE/1)

	Remote file shared with ICD
	· File from your SELECT statement
	· FILE Z-REMOTE (TITLE = "PPP-AS42-27_NSS_U"/TELNETSTA/00137)
	· FILE Z-REMOTE (TITLE= "IP204_24_16_
163"/"GENERIC_MIPCDEVL"/CANDE/1)

	Remote file and separate ICD file
	· ICDREMTF
· File from your SELECT statement
	· FILE ICDREMTF (TITLE = "PPP-AS42-27_NSS_U"/TELNETSTA/00137)
· FILE Z-REMOTE (TITLE = "PPP-AS42-27_NSS_U"/TELNETSTA/00188)
	· FILE ICDREMTF (TITLE= "IP204_24_16_
163"/"GENERIC_MIPCDEVL"/CANDE/1)
· FILE Z-REMOTE (TITLE= "IP204_24_16_
163"/"GENERIC_MIPCDEVL"/CANDE/2)

Figure 3		File equate examples

	If your program has:
	File names to equate
	ALTERNATIVES to WFL MODIFY or
compiled-in file equates

	
	
	CANDE
	WFL

	No remote file
	· ICDREMTF
	· use CANDE's automatic file equate
	· MYJOB(STATIONNAME = #MYSELF(SOURCENAME))

	Remote file shared with ICD
	· File from your SELECT statement
	· use CANDE's automatic file equate
	· MYJOB(STATIONNAME = #MYSELF(SOURCENAME))

	Remote file and separate ICD file
	· ICDREMTF
· File from your SELECT statement
	· Include the file equates with the RUN statement and use STATION=0
	· Include the file equates in the job file

Figure 4		Options other than file equate

[bookmark: _Toc30328584]Dynamic remote-file windows
For completeness we should mention that if you run a remote-file program under COMS (Transaction Server for ClearPath) with the remote file label-equated to your station (rather than to a particular CANDE window that is logged in to the station as we discussed above), COMS creates a dynamic remote-file window for the dialog called "REM<number>".
Quoting from the "Transaction Server for ClearPath MCP Programming Guide":
The names of dynamic remote-file windows are assigned by the Transaction Server. When the dynamic remote file is opened, the Transaction Server reports the name to you. In specifying the name of a dynamic remote-file window in a command, you must enter the name as follows, where <nnnn> is a unique 4-digit number:
REM<nnnn>
You can move to the remote file window by specifying "?ON REM<number>/<dialog number>" (?ON REM0001/1 for example). When the dynamic remote-file window is the current window, all input except control commands is routed to the remote file. (Please see the section "Communicating through Remote-File Windows" in "Transaction Server for ClearPath MCP Programming Guide" for a more detailed discussion.)
We think it is easier to identify a particular CANDE window as we described in the preceding sections so that you know exactly the window name to transfer to.

[bookmark: _Toc30328585]QUESTIONS and ANSWERS about typical ICD debugging issues
Q. I forgot to initialize a variable in my program. How can I do some testing without having to recompile?
A. You can use the SET command to change the value of a variable. First place a breakpoint at the place where you want to set the value, let your program continue to that point, and then set the value. Suppose your program has an initialization paragraph that you perform at startup.

ICD> BREAK 36500

One BREAK was set

ICD> CONTINUE

.

.

Breakpoint entered at 36500 of Mainline

ICD> SET SKIP-FLAG = DEPT= 0 OR LAST-TRANSDATE < CYCLE-DATE

ICD> CONTINUE

Q. I forgot to initialize a variable, but I need to change it every time I enter a particular paragraph because it is PERFORMed for every record.
A. The WHEN command can be attached to a breakpoint that you place at the appropriate spot in the paragraph. The WHEN allows you to include ICD commands - in this case you will use the SET command. The WHEN must contain a Boolean expression to be evaluated to decide whether to stop. Since we want to stop every time, we will use TRUE. Assuming you don't want to be informed every time that your SET command is being done, lets add the SILENT option too. And finally, because this is a long command we use the ability continue input across multiple lines by ending the first line with %. What you would type is underlined.
ICD>BREAK 100-PROCESS-REC WHEN TRUE (SET %

Input Continuation

ICD >TOTAL-ORDERED = 0; CONTINUE) :SILENT

WHEN condition established

ICD >CONTINUE
Q. I am reading a data file and want to stop when I read a record with a country code of KUWAIT.
A. Put a break immediately after your read statement. Also attach a WHEN to the break to look at the variable COUNTRY-CODE and test for the value.

ICD> BREAK 234600 WHEN COUNTRY-CODE = "KUWAIT"

Q. Somewhere in my program an index item is getting set to an improper value. I want to find out where.

A. The WHEN statement will watch variables or expressions and stop whenever they reach a value that you specify. (Be careful with this one, though, because it can slow your program down drastically. It is more efficient to attach the WHEN to a line number with the BREAK command).

ICD> WHEN CUST-NAME-NDX GTR 8
Q. I want to stop whenever the variable STATE-CODE changes value.
A. Construct a WHEN statement using the current value.

ICD> DISPLAY STATE-CODE

STATE-CODE = "DE"

ICD> WHEN STATE-CODE NEQ "DE"

WHEN established

ICD>CONTINUE
Q. How can I avoid having to constantly retype a long DISPLAY command?
A. Make a CANDE file containing the ICD prompt followed by the command you need. Then at run-time use PLAYBACK or DO to execute it.
MAKE COMMANDFILE

100 ICD>DISPLAY MUN-CODE (1 THRU 5), MUN-NDX(A+B)*2

SAVE
Then to execute the command file from within ICD, enter:
DO COMMANDFILE

If you have already started your program, then you can use the RECORD command as described in the following example.
Q. I have already started my program and find myself constantly typing a series of commands. Is there a quick way to save some typing?
A. Just RECORD the command to a file and then you can PLAYBACK or DO it anytime you need it.

ICD>RECORD COMMANDFILE

RECORD file established
ICD>DISPLAY TAX-CODE(TAX-TYPE (TYPEID)) + TAX-BASE * TAX-ID
ICD>DISPLAY T-VAR (1 THRU 5) , X / 7.5

ICD>RECORD -

RECORD file closed
Q. Is there a way I can have a series of commands done automatically when ICD starts?
A. Yes, just make a file of commands and save it as ICD/STARTUP. They will be executed every time you start a debug session.
Q. How can I monitor the value of a variable at the beginning of a loop ?
A. Use a WHEN TRUE that is attached to the proper source line and include the display command to show the value of the variable and then the continue command.

BREAK 245000 WHEN TRUE (DISPLAY VARIABLE-TO-BE-MONITORED; CONT)
Q. I want to display a range of subscripts in a subscripted variable.
A. Use the THRU form of showing subscripts. i.e.
ICD> DISPLAY MONTH-HOLDER (5 .. 12)

Q. I entered the CONTINUE command but my program is not stopping at any of the breakpoints I entered. Is something wrong with ICD?

A. You did not place your breakpoints carefully, so that now your logic path through the program is not encountering any of them. It is easy, however, to stop your program at any time when it is caught in a loop or "running away" - just enter ?HI. The ?HI must begin in column 1 so be sure to HOME your cursor first.
ICD> Continue

<long pause here while you are waiting for something to happen>
?HI
BREAKPOINT entered at 345600 as a result of ?HI
Q. I have a TD terminal and every time I enter an ICD command I get an error message, except the message is about a command I didn't enter. No commands work at all - not even HELP.
A. Let ICD know that you have a TD terminal by entering OPT + TD or else put your terminal in scroll mode by entering ?+S and home the cursor before transmitting a command.
Q. I compiled my on-line program (or batch program) and compiled-in a file equate for ICDREMTF, the file where ICD communicates with me at my terminal. Now I am at a different station. Can I send my output to a different station without recompiling?
A. If you want to change the compiled-in file equate just use the WFL MODIFY command.
WFL MODIFY <code file title > ; %

FILE ICDREMTF (TITLE=S305/CANDE/2)

Q. If my source consists of a merged TAPE file and patches how will ICD know about the merged patches?
A. You must save a copy of the merged patch file and tell ICD about it at run time. Use $SET NEW at compile time. Then when you are in your debugging session use the SOURCE command to tell ICD about the correct source file.
